An inequality between class numbers and Ono's numbers associated to imaginary quadratic fields

By Fumio Sairaiji*) and Kenichi Shimizu**)
(Communicated by Shigefumi Mori, M. J. A., Sept. 12, 2002)

Abstract

Ono's number p_{D} and the class number h_{D}, associated to an imaginary quadratic field with discriminant $-D$, are closely connected. For example, Frobenius-Rabinowitsch Theorem asserts that $p_{D}=1$ if and only if $h_{D}=1$. In 1986, T. Ono raised a problem whether the inequality $h_{D} \leq 2^{p_{D}}$ holds. However, in our previous paper [8], we saw that there are infinitely many D such that the inequality does not hold. In this paper we give a modification to the inequality $h_{D} \leq 2^{p_{D}}$. We also discuss lower and upper bounds for Ono's number p_{D}.

Key words: Ono's number; class number.

1. Introduction. Let k_{D} be an imaginary quadratic field with discriminant $-D$. We denote by h_{D} the class number of k_{D}. We put $\omega_{D}:=\sqrt{-D / 4}$ or $\omega_{D}:=(1+\sqrt{-D}) / 2$ according as $D \equiv 0 \bmod 4$ or $D \equiv 3 \bmod 4$. We put $f_{D}(x):=\mathbf{N}\left(x+\omega_{D}\right)$, where \mathbf{N} is the norm mapping. We define the natural number p_{D} by

$$
p_{D}:=\max \left\{\nu\left(f_{D}(x)\right) \mid x \in \mathbf{Z} \cap[0, D / 4-1]\right\}
$$

if $D \neq 3,4$, and $p_{D}=1$ if $D=3,4$, where $\nu(n)$ is the number of (not necessarily distinct) prime factors of n (cf. $[3,6]$). We call the number p_{D} Ono's number.

Ono's number p_{D} is connected with the class number h_{D}. For example, the Frobenius-Rabinowitsch Theorem $[2,7]$ asserts that

$$
p_{D}=1 \text { if and only if } h_{D}=1
$$

The theorems of R. Sasaki [9] assert that

$$
\begin{equation*}
p_{D}=2 \text { if and only if } h_{D}=2 \tag{1.1}
\end{equation*}
$$

H. Möller [3] also obtains (1.1) essentially.
T. Ono [6] had a conjectural inequality

$$
\begin{equation*}
h_{D} \leq 2^{p_{D}} \quad \text { for all } D \tag{1.2}
\end{equation*}
$$

H. Wada verified the inequality (1.2) for D whose square-free part is less than or equal to 8173 , by using computer (cf. [6]; p. 57). However, in our previ-

[^0]ous paper [8], we showed that there exist infinitely many D such that the inequality (1.2) does not hold. Thus we want to modify the inequality (1.2). In fact, in our previous paper, we showed that for a given positive real number c the inequality $h_{D}>c^{p_{D}}$ holds for infinitely many D. Thus the problem is to find a suitable non-constant function on D instead of the constant c.

In this paper, we give a modification of (1.2) as follows. We denote by q_{D} the smallest prime number which splits completely in k_{D}.

Theorem 2.2. The inequality $h_{D}<q_{D}^{p_{D}}$ holds for all D.

Specially in the case of $D \equiv 7 \bmod 8$, that is, $q_{D}=2$, we have the following corollary.

Corollary 2.3. The inequality $h_{D}<2^{p_{D}}$ holds if $D \equiv 7 \bmod 8$.

We also have the following theorem.
Theorem 2.4. For a given positive real number ε the inequality $h_{D}<q_{D}^{(0.5+\varepsilon) p_{D}}$ holds for sufficiently large D.

In this paper we also discuss estimates for p_{D}.
Theorem 3.3. The inequality

$$
p_{D} \geq \frac{\log \log 163}{\log 163} \frac{\log D}{\log \log D}
$$

holds for all D under the Extended Riemann Hypothesis (E.R.H.).

Theorem 3.4. The inequality $p_{D}<(2 / \log 2)$ $\log D$ holds.
H. Möller [3] showed that there exists a positive constant c_{1} such that $c_{1} \log D / \log \log D<p_{D}$ for sufficiently large D under (E.R.H.). He also showed
that there exists a positive constant c_{2} such that the inequality $p_{D}<c_{2} \log D / \log \log D$ holds for infinitely many D, which means that the order of his lower bound can not be improved. We determine a constant c_{1} effectively by showing Theorem 3.3.

In Section 2, we discuss estimates for $p_{D} \log q_{D} / \log h_{D}$, and show Theorems 2.2 and 2.4. In Section 3, we discuss lower and upper bounds for p_{D}, and show Theorems 3.3 and 3.4.
2. An inequality between p_{D} and h_{D}. In this section, we give a modification of Ono's conjectural inequality (1.2). We showed that for a given positive real number c the inequality $h_{D}>c^{p_{D}}$ holds for infinitely many D (cf. [8]; Theorem 1). Hence we want to find a non-constant function $f(D)$ instead of the constant c and obtain an inequality of the form: $h_{D} \leq f(D)^{p_{D}}$ for all D.

In the following, we show that we can take q_{D} as $f(D)$ in Theorem 2.2. At first we estimate $p_{D} \log q_{D} / \log h_{D}$.

Theorem 2.1 (cf. [3]; p.111). The inequality $p_{D}>\log _{q_{D}}(D / 4-1)$ holds for $D>4$.

Proof. We denote by n the greatest integer not greater than $\log _{q_{D}}(D / 4-1)$. If $n=0$, our assertion is trivial. We consider the case of $n \geq 1$. Since q_{D} splits completely in k_{D} and $q_{D}^{n} \leq D / 4-1$, we can take an integer x_{0} such that q_{D}^{n} divides $f_{D}\left(x_{0}\right)$ and $0 \leq x_{0} \leq D / 4-1$. Since there does not exist any principal primitive ideal with norm less than $D / 4$ in $k_{D}, f_{D}\left(x_{0}\right)=\mathbf{N}\left(x_{0}+w_{D}\right) \neq q_{D}^{n}$. Thus we have

$$
p_{D} \geq \nu\left(f_{D}\left(x_{0}\right)\right)=n+1>\log _{q_{D}}(D / 4-1)
$$

From Hilfssatz 4 of Siegel [10] (cf. also [5]; p. 254), we have

$$
\begin{equation*}
h_{D}<(3 / \pi) \sqrt{D} \log D \tag{2.1}
\end{equation*}
$$

for $D>4$. Thus it follows from Theorem 2.1 and (2.1) that

$$
\begin{align*}
& (2.2) \quad \frac{p_{D} \log q_{D}}{\log h_{D}}>\frac{\log (D / 4-1)}{\log ((3 / \pi) \sqrt{D} \log D)} \tag{2.2}\\
& (2.3)=\frac{\log (D / 4-1) / \log D}{\log (3 / \pi) / \log D+(1 / 2)+\log \log D / \log D}
\end{align*}
$$

for $D>4$.
By using the inequality (2.2), we have the following theorem.

Theorem 2.2. The inequality $h_{D}<q_{D}^{p_{D}}$ holds for all D.

Proof. We first show that the right hand side of (2.2), that is, (2.3) is a monotone increasing function for $D>e^{e}$. Since $\log \log D / \log D$ is monotone decreasing for $D>e^{e}$, the denominator of (2.3) is monotone decreasing and positive for $D>e^{e}$. Since the numerator of (2.3) is monotone increasing and positive for $D>8,(2.3)$ is a monotone increasing function for $D>e^{e}$.

The smallest value of D for which the right hand side of (2.2) is greater than one is $D=611$. When $D=611$, we have

$$
\frac{\log (D / 4-1)}{\log ((3 / \pi) \sqrt{D} \log D)}=1.00042 \cdots
$$

Thus it follows from (2.2) that $p_{D} \log q_{D} / \log h_{D}>$ $1.00042 \cdots>1$ holds for $D \geq 611$. Namely the inequality $h_{D}<q_{D}^{p_{D}}$ holds for $D \geq 611$. The inequality $h_{D}<q_{D}^{p_{D}}$ can be directly verified for $D<611$.

This completes the proof.
Specially in the case of $D \equiv 7 \bmod 8$, that is, $q_{D}=2$, we have the following corollary. Hence the inequality $h_{D}<q_{D}^{p_{D}}$ is a modification of (1.2).

Corollary 2.3. The inequality $h_{D}<2^{p_{D}}$ holds if $D \equiv 7 \bmod 8$.

Since (2.3) has the limit 2 as D tends to infinity, we have the inequality

$$
\begin{equation*}
\liminf _{D \rightarrow+\infty} \frac{p_{D} \log q_{D}}{\log h_{D}} \geq 2 \tag{2.4}
\end{equation*}
$$

holds. The inequality (2.4) immediately implies the following theorem.

Theorem 2.4. For a given positive real number ε the inequality $h_{D}<q_{D}^{(0.5+\varepsilon) p_{D}}$ holds for sufficiently large D.
3. Lower and upper bounds for p_{D}.
H. Möller showed the following theorem.

Theorem 3.1 ([3]; Satz 5). There exists a positive constant c_{1} such that

$$
\begin{equation*}
c_{1} \frac{\log D}{\log \log D}<p_{D} \tag{3.1}
\end{equation*}
$$

for sufficiently large D under the Extended Riemann Hypothesis (E.R.H.).

It follows from Theorem 3.1 that Ono's number p_{D} diverges as D tends to infinity under (E.R.H.). He also showed the following theorem.

Theorem 3.2 ([3]; Satz 6). There exists a positive constant c_{2} such that the inequality

$$
p_{D}<c_{2} \frac{\log D}{\log \log D}
$$

holds for infinitely many D.
Theorem 3.2 means the order of the lower bound (3.1) can not be improved.

In this section, we determine a constant c_{1} effectively. Next we discuss an upper bound for p_{D}.

The Extended Riemann Hypothesis asserts that all Hecke L-functions are zero-free in the half-plane $\operatorname{Re}(s)>1 / 2$. Under (E.R.H.), E. Bach [1] showed that the inequality

$$
\begin{equation*}
q_{D}<6 \log ^{2} D \tag{3.2}
\end{equation*}
$$

for all D. It follows from Theorem 2.1 and (3.2) that

$$
p_{D} \geq \frac{\log (D / 4-1)}{\log q_{D}}>\frac{\log (D / 4-1)}{\log \left(6 \log ^{2} D\right)}
$$

for $D>4$. Thus we have

$$
\begin{equation*}
\frac{p_{D} \log \log D}{\log D}>\frac{\log (D / 4-1)}{\log D} \frac{\log \log D}{\log 6+2 \log \log D} \tag{3.3}
\end{equation*}
$$

for $D>4$. The functions $\log (D / 4-1) / \log D$ and $\log \log D /(\log 6+2 \log \log D)$ are monotone increasing for $D>4$, and they are positive for $D>8$. Thus the right hand side of (3.3) is monotone increasing for $D>8$.

By estimating the right hand side of (3.3), we have the following theorem.

Theorem 3.3. The inequality

$$
\begin{equation*}
p_{D} \geq \frac{\log \log 163}{\log 163} \frac{\log D}{\log \log D} \tag{3.4}
\end{equation*}
$$

holds for all D under (E.R.H.).
Proof. The right hand side of (3.3) is monotone increasing for $D>8$ and it is greater than $\log \log 163 / \log 163$ for $D \geq 73279$. Thus we have the inequality (3.4) for $D \geq 73279$. It can be directly verified for $D<73279$.

Next we discuss an upper bound for p_{D}.
Theorem 3.4. The inequality

$$
\begin{equation*}
p_{D}<\frac{2}{\log 2} \log D \tag{3.5}
\end{equation*}
$$

holds for all D.
Proof. When $D=3,4$, the inequality (3.5) directly follows. We assume $D \neq 3,4$. By the definition of p_{D}, there exists an integer x_{0} such that $0 \leq$ $x_{0} \leq D / 4-1$ and $p_{D}=\nu\left(f_{D}\left(x_{0}\right)\right)$. Since we have $2^{p_{D}} \leq f_{D}\left(x_{0}\right)<D^{2}$, the inequality (3.5) holds.

When $q_{D}=2$, that is, $D \equiv 7 \bmod 8$, it follows from Theorem 2.1 that

$$
\begin{equation*}
\frac{p_{D}}{\log D} \geq \frac{1}{\log 2} \frac{\log (D / 4-1)}{\log D} \tag{3.6}
\end{equation*}
$$

The right hand side of (3.6) has the limit $1 / \log 2$ as D tends to infinity. By virtue of Dirichlet's theorem on primes in arithmetic progressions, there exist infinitely many primes D such that $q_{D}=2$. Thus we also have the inequality

$$
\limsup _{D \rightarrow+\infty} \frac{p_{D}}{\log D} \geq \frac{1}{\log 2}
$$

Namely, for a given positive real number ε the inequality

$$
p_{D}>(1 / \log 2-\varepsilon) \log D
$$

holds for infinitely many D. This means that the order of our upper bound (3.5) can not be improved.

By using Theorem 3.4 and the theorem of Siegel [10], that is,

$$
\lim _{D \rightarrow+\infty} \frac{\log h_{D}}{\log \sqrt{D}}=1
$$

we see that

$$
\begin{equation*}
\sup \frac{p_{D}}{\log h_{D}}<+\infty \tag{3.7}
\end{equation*}
$$

The inequality (3.7) implies the inequality (1.1) for sufficiently large D, and it also implies the following theorem.

Theorem 3.5. The equality $p_{D}=h_{D}$ in (1.1) holds only for finitely many D.

References

[1] Bach, E.: Explicit bounds for primality testing and related problems. Math. Comp., 55, 355-380 (1990).
[2] Frobenius, F. G.: Über quadratische Formen die viele Primzahlen darstellen. Sitzungsber. d. Kgl. Preuss. Acad. Wiss., Berlin, pp. 966-980 (1912).
[3] Möller, H.: Verallgemeinerung eines Satzes von Rabinowitsch über imaginär-quadratische Zahlkörper. J. Reine Angew. Math., 285, 100113 (1976).
[4] Mollin, R. A.: Quadratics. CRC Press, Boca Raton (1996).
[5] Narkiewicz, W.: Classical Problems in Number Theory. PWN-Polish Scientific Publishers, Warszawa (1986).
[6] Ono, T.: Arithmetic of algebraic groups and its applications. St. Paul's International Exchange Series Occasional Papers VI, St. Paul's University, Tokyo (1986).
[7] Rabinowitsch, G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Math., 142, 153-164 (1913).
[8] Sairaiji, F., and Shimizu, K.: A note on Ono's numbers associated to imaginary quadratic field. Proc. Japan Acad., 77A, 29-31 (2001).
[9] Sasaki, R.: On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad., 62A, 37-39 (1986).
[10] Siegel, C. L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith., 1, 83-86 (1935).

[^0]: 2000 Mathematics Subject Classification. Primary 11R11; Secondary 11R29.
 *) Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112.
 **) Kenmei Girls' Junior and Senior High School, 68, Honmachi, Himeji, Hyogo 670-0012.

