On an elliptic curve over $\mathrm{Q}(t)$ of rank ≥ 14

By Shoichi Kihara
Department of Neuropsychiatry, School of Medicine, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 2001)

Abstract

We show an elliptic curve over $\mathbf{Q}(t)$ of rank ≥ 14.

Key words: Elliptic curve; rank.

In [2] and [3] Mestre showed an elliptic curve over $\mathbf{Q}(t)$ of rank ≥ 11 and ≥ 12 respectively. Also Nagao showed an example of rank ≥ 13 in [4]. We showed by using Nagao's example that there are infinitely many elliptic curves over \mathbf{Q} of rank ≥ 14 in [1]. In this note we show an elliptic curve over $\mathbf{Q}(t)$ of rank at least 14 .

Let $a_{1}=0, a_{2}=\left(2 p^{2}+p q+2 q^{2}\right)^{2}, a_{3}=2(p+$ q) $)^{2}\left(2 p^{2}+p q+q^{2}\right), a_{4}=q^{2}\left(4 p^{2}-p q+4 q^{2}\right), a_{5}=p(2 p-$ q) $\left(2 p^{2}+4 p q+5 q^{2}\right), a_{6}=4 p^{4}+8 p^{3} q+9 p^{2} q^{2}-2 p q^{3}+2 q^{4}$ and $b_{i}=u+a_{i}, b_{i+6}=-u+a_{i}(1 \leq i \leq 6)$.

We consider the polynomial $F(x)=\prod_{i=1}^{12}(x-$ $\left.b_{i}\right) \in K[x]$ where $K=\mathbf{Q}(u, p, q)$. There are unique polynomials $G(x), r(x) \in K[x]$ with $\operatorname{deg} G(x)=6$, $\operatorname{deg} r(x) \leq 5$ and $F(x)=G(x)^{2}-r(x)$.

By the direct calculation, we see the x^{5} coefficient of $r(x)$ is 0 , and $\operatorname{deg} r(x)=4$. Then the curve
\mathcal{E}

$$
y^{2}=r(x)
$$

is an elliptic curve over K with $12 K$-rational points $\mathrm{P}_{i}=\left(x_{i}, y_{i}\right)(1 \leq i \leq 12)$ where $x_{i}=b_{i}, y_{i}=$ $G\left(b_{i}\right)$. From now on we express the x-coordinate of K-rational point P on \mathcal{E} as $x(\mathrm{P})$.

Then there is one more K-rational point P_{13} on \mathcal{E} where

$$
\begin{aligned}
x\left(\mathrm{P}_{13}\right)= & \left(\frac{2 p^{2}+4 p q+5 q^{2}}{2 p^{2}+2 p q+3 q^{2}}\right) u+\frac{1}{2 p^{2}+2 p q+3 q^{2}} \\
& \times\left(8 p^{6}+28 p^{5} q+58 p^{4} q^{2}+69 p^{3} q^{3}\right. \\
& \left.+76 p^{2} q^{4}+40 p q^{5}+22 q^{6}\right)
\end{aligned}
$$

Now by specializing $p=t^{2}\left(8+3 t^{2}\right), q=-6\left(2+t^{2}\right)$ $\times\left(4+t^{2}\right)$ and $u=4\left(2+t^{2}\right)\left(2304+2400 t^{2}+928 t^{4}+\right.$ $\left.150 t^{6}+9 t^{8}\right)\left(1152+1632 t^{2}+860 t^{4}+201 t^{6}+18 t^{8}\right) / t$, we

1991 Mathematics Subject Classification. Primary 11G05.
have $2 \mathbf{Q}(t)$-rational points P_{14} and P_{15} on \mathcal{E} where

$$
\begin{aligned}
& x\left(\mathrm{P}_{14}\right)=-4\left(1152+1632 t^{2}+860 t^{4}+201 t^{6}+18 t^{8}\right) \\
& \left(10616832-18579456 t+33619968 t^{2}-51535872 t^{3}\right. \\
& +45895680 t^{4}-61848576 t^{5}+35397888 t^{6} \\
& -41945856 t^{7}+16968640 t^{8}-17591104 t^{9} \\
& +5232272 t^{10}-4675248 t^{11}+1035180 t^{12} \\
& -769824 t^{13}+126252 t^{14}-71874 t^{15} \\
& \left.+8559 t^{16}-2916 t^{17}+243 t^{18}\right) /\left(t \left(2304+3168 t^{2}\right.\right. \\
& \left.\left.+1580 t^{4}+339 t^{6}+27 t^{8}\right)\right) \\
& x\left(\mathrm{P}_{15}\right)=4\left(-48+24 t-34 t^{2}+16 t^{3}-6 t^{4}+3 t^{5}\right) \\
& \quad \times\left(96+80 t^{2}+4 t^{3}+18 t^{4}+3 t^{5}\right) \\
& \quad \times\left(1152+1632 t^{2}+860 t^{4}+201 t^{6}+18 t^{8}\right) / t .
\end{aligned}
$$

Now we regard \mathcal{E} as an elliptic curve over $\mathbf{Q}(t)$ whose group structure is given by P_{15} as origin.

Then we have the following,
Theorem. $\mathbf{Q}(t)$-rank of \mathcal{E} is at least 14.
Proof. This is shown by specializing $t=2$. Let $\mathrm{R}_{1}, \ldots, \mathrm{R}_{14}$ be the rational points obtained from $\mathrm{P}_{1}, \ldots, \mathrm{P}_{14}$ by the above specialization, by using calculation system PARI, we see that the determinant of the matrix $\left(\left\langle\mathrm{R}_{i}, \mathrm{R}_{j}\right\rangle\right)(1 \leq i, j \leq 14)$ associated to the canonical height is 221792776617402574.10. Since this determinant is non-zero, we see that $\mathrm{R}_{1}, \ldots, \mathrm{R}_{14}$ are independent points. So we see that $\mathrm{P}_{1}, \ldots, \mathrm{P}_{14}$ are independent.

References

[1] Kihara, S.: On an infinite family of elliptic curves with rank ≥ 14 over Q. Proc. Japan Acad., 72A, 32 (1997).
[2] Mestre, J.-F.: Courbes elliptiques de rang ≥ 11 sur $\mathbf{Q}(t)$. C. R. Acad. Sci. Paris, 313, 139-142 (1991).
[3] Mestre, J.-F.: Courbes elliptiques de rang ≥ 12 $\operatorname{sur} \mathbf{Q}(t)$. C. R. Acad. Sci. Paris, 313, 171-174 (1991).
[4] Nagao, K.: An example of elliptic curve over $\mathbf{Q}(t)$ with rank ≥ 13. Proc. Japan Acad., 70A, 152153 (1994).

