A note on Ono's numbers associated to imaginary quadratic fields

By Fumio Sairaiji and Kenichi Shimizu

Kenmei Junior and Senior Girls' High School, 68, Honmachi, Himeji, Hyogo 670-0012 (Communicated by Shokichi IYANAGA, M. J. A., Feb. 13, 2001)

Abstract: T. One raised some problems on relations between One's numbers p_D and the class numbers h_D of imaginary quadratic fields. In this paper we give an upper bound for p_D . The upper bound contributes to one of the problems.

Key words: Ono's number; class number.

1. Introduction. Let k_D be an imaginary quadratic field with discriminant -D. We denote by h_D the class number of k_D . We put $\omega_D := \sqrt{-D/4}$ or $\omega_D := (1 + \sqrt{-D})/2$ according as $D \equiv 0 \mod 4$ or $D \equiv 3 \mod 4$. We put $f_D(x) := \mathbf{N}(x + \omega_D)$, where \mathbf{N} is the norm mapping. We define the natural number p_D by

$$p_D := \max \left\{ \nu(f_D(x)) \mid x \in \mathbf{Z} \cap \left[0, \frac{D}{4} - 1\right] \right\}$$

if $D \neq 3, 4$, and $p_D = 1$ if D = 3, 4, where $\nu(n)$ is the number of (not necessarily distinct) prime factors of n (cf. [2], [3]). We call the number p_D Ono's number. By using p_D , we can formulate the Frobenius-Rabinowitsch Theorem as follows:

$$p_D = 1$$
 if and only if $h_D = 1$.

T. Ono conjectured:

(i) $p_D = 2$ if and only if $h_D = 2$;

(ii)
$$p_D \leq h_D$$
,

both of which were proved by R. Sasaki [5]. Furthermore, T. Ono raised the problem to examine whether $h_D \leq 2^{p_D}$ holds. H. Wada verified the inequality for D whose square-free part is less than or equal to 8173, by computer (cf. [3]; p. 57).

In this paper, we give an upper bound for p_D . By using the upper bound, we show that there exist infinitely many D such that $h_D \leq 2^{p_D}$ does not hold. More generally, we prove:

Theorem 1. Let c be a positive number which is greater than one. Then there exist infinitely many D such that $h_D > c^{p_D}$.

2. An upper bound for p_D . We denote by t_D the number of distinct prime divisors of D. We

denote by q_D the smallest prime number which splits completely in k_D .

Lemma 2. The inequality $\nu(\gcd(D, f_D(x))) \le t_D$ holds for each integer x such that $0 \le x \le D/4 - 1$. The equality holds if and only if $D \equiv 0 \mod 4$, $D/4 \equiv 2 \mod 4$ and x = 0.

Proof. We first consider the case of $D \equiv 0 \mod 4$. Since $D/4 \equiv 1, 2 \mod 4$, 2^2 does not divide $x^2 + D/4$ for each x. Since D/4 is square-free, we have $\nu(\gcd(D, f_D(x))) \leq t_D$. Suppose that the equality $\nu(\gcd(D, f_D(x))) = t_D$ holds. Then D/4 divides $f_D(x)$. Since D/4 is square-free, we see that D/4 divides x. Together with the condition $0 \leq x \leq D/4 - 1$, we see x = 0. It follows from $t_D = \nu(\gcd(D, f_D(0))) = \nu(D/4)$ that $D/4 \equiv 2 \mod 4$. Conversely it is clear that the equality holds for $D/4 \equiv 2 \mod 4$ and x = 0.

Secondly we consider the case of $D \equiv 3 \mod 4$. Since D is square-free, we have $\nu(\gcd(D, f_D(x)))$ $\leq t_D$. Suppose that the equality $\nu(\gcd(D, f_D(x))) = t_D$ holds. Then D divides $f_D(x)$. Consequently we see that D divides 2x+1, which contradicts the condition $0 \leq x \leq D/4 - 1$. Thus the equality does not hold in this case.

Lemma 3. The inequality $\max\{f_D(x) \mid x \in \mathbf{Z} \cap [0, D/4 - 1]\} < (D/4)^2 \text{ holds for } D \ge 7.$

Proof. If $D \equiv 0 \mod 4$ and D > 8, then

$$f_D(x) \le \left(\frac{D}{4} - 1\right)^2 + \frac{D}{4} < \left(\frac{D}{4}\right)^2$$

for each integer x in [0, D/4 - 1]. If $D \equiv 3 \mod 4$ and $D \ge 7$, then

$$f_D(x) \le \left(\frac{D-7}{4}\right)^2 + \left(\frac{D-7}{4}\right) + \frac{D+1}{4} < \left(\frac{D}{4}\right)^2$$

for each integer x in [0, D/4 - 1]. Thus Lemma 3 follows.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11R11; Secondary 11R29.

Now we have the following upper bound for p_D . **Proposition 4** (cf. [2]; p. 112). The inequality $p_D < t_D - 1 + \log_{q_D} (D/4)^2$ holds for $D \ge 7$.

Proof. Since for each integer x the principal ideal $(x + \omega_D)$ is primitive, $f_D(x)$ is not divided by any prime number which remains prime in k_D . By the same reason, $f_D(x)$ is not divided by the second power of any prime number which ramifies in k_D . By definition, $p_D = \nu(f_D(x_0))$ for some x_0 . We can put

$$f_D(x_0) = ap_1 \cdots p_r,$$

where $a := \gcd(D, f_D(x_0))$ and p_i is a prime number which splits completely in k_D .

By Lemma 3, we have

$$q_D^r \le p_1 \cdots p_r \le f_D(x_0) < \left(\frac{D}{4}\right)^2$$

and consequently, we have

$$r < \log_{q_D} \left(\frac{D}{4}\right)^2$$
.

On the other hand, it follows from Lemma 2 that $\nu(a) \leq t_D - 1$ except for the case where $D \equiv 0 \mod 4$, $D/4 \equiv 2 \mod 4$ and $x_0 = 0$. Since $p_D = \nu(a) + r$, Proposition 4 follows except for this case. The exceptional case reduces to the case of $x_0 \neq 0$ as follows. In the exceptional case, the inequalities

$$p_D \ge \nu \left(f_D \left(\frac{D}{4p} \right) \right) = \nu \left(\frac{D}{4p} \right) + \nu \left(\frac{D}{4p} + p \right)$$

 $\ge \nu (f_D(0)) = p_D$

hold for a prime divisor p of D/4. Thus we can take D/4p instead of 0 as x_0 .

As a corollary of Proposition 4, we give another upper bound for p_D in terms of the exponent e_D of the ideal class group of k_D .

Corollary 5. The inequality $p_D < 2e_D + t_D - 1$ holds for D > 7.

Proof. We note that the norm of each primitive principal ideal is greater than or equal to D/4. Since the n-th power of a prime ideal lying above q_D in k_D is primitive for each natural number n, it follows from Proposition 4 that

$$e_D \geq \log_{q_D} \frac{D}{4} > \frac{p_D - t_D + 1}{2}$$

for $D \geq 7$. Thus we obtain Corollary 5.

3. Proof of Theorem 1. We first show that $h_D > c^{p_D}$ for D satisfying the conditions (i)-(iii) as below. Secondly we show that there exist infinitely many such D.

Let ε be a non-zero positive number less than one. Then, by the theorem of Siegel [6], there exists a constant $D_0(\varepsilon)$ such that

$$1 - \varepsilon < \frac{\log h_D}{\log \sqrt{D}} < 1 + \varepsilon$$

holds for $D \geq D_0(\varepsilon)$. Thus

$$(1) D^{(1-\varepsilon)/2} < h_D$$

holds for $D \geq D_0(\varepsilon)$.

Let ℓ be an odd prime number such that

(2)
$$\ell > c^{4/(1-\varepsilon)}.$$

We suppose that we can take D_1 , as D, satisfying the following conditions:

- (i) $D_1 \ge \max\{D_0(\varepsilon), 7\};$
- (ii) $t_{D_1} = 1$;
- (iii) $q_{D_1} = \ell$.

Then it follows from Proposition 4 that

$$(3) p_{D_1} < \log_{\ell} \left(\frac{D_1}{4}\right)^2 < \frac{2}{\log_{c} \ell} \times \log_{c} D_1.$$

Since $2/\log_c \ell < (1-\varepsilon)/2$ from (2), it follows from (3) that

(4)
$$c^{p_{D_1}} < D_1^{(1-\varepsilon)/2}$$
.

Thus, by (i) and (1), the inequality $c^{p_{D_1}} < h_{D_1}$ is verified.

Indeed, D_1 satisfies the condition (ii) if D_1 is an odd prime number such that $D_1 \equiv 3 \mod 4$. Furthermore the condition (iii) is equivalent to the following simultaneous congruences:

(iiia) $(-D_1/p) = 0, -1$ for each prime number $p < \ell$; (iiib) $(-D_1/\ell) = 1,$

where $(-D_1/p)$ is the Kronecker symbol. Hence, by virtue of Dirichlet's theorem on prime numbers in arithmetic progressions, there exist infinitely many D_1 satisfying the conditions (i)-(iii).

This completes the proof of Theorem 1.

Remark 6. The smallest value of D for which $h_D > 2^{p_D}$ takes place is D = 37123. Then we have $h_{37123} = 17$ and $p_{37123} = 4$.

References

- [1] Ishibashi, M.: A sufficient arithmetical condition for the ideal class group of an imaginary quadratic field to be cyclic. Proc. Amer. Math. Soc., **117**, 613–618 (1993).
- [2] Möller, H.: Verallgemeinerung eines Satzes von Rabinowitsch über imaginär-quadratische Zahl-

- körper. J. Reine Angew. Math., 285, 100–113 (1976).
- [3] Ono, T.: Arithmetic of Algebraic Groups and its Applications. St. Paul's International Exchange Series Occasional Papers VI, St. Paul's Univ., Tokyo (1986).
- [4] Rabinowitsch, G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern.
 J. Reine Angew. Math., 142, 153–164 (1913).
- [5] Sasaki, R.: On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad., **62A**, 37–39 (1986).
- [6] Siegel, C. L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith., 1, 83–86 (1935).
- [7] Svirsky, J. B.: On the class numbers of imaginary quadratic fields. Ph. D. thesis, Johns Hopkins Univ. (1985).