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A note on Ono’s numbers associated to imaginary quadratic fields
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Abstract: T. Ono raised some problems on relations between Ono’s numbers pD and the
class numbers hD of imaginary quadratic fields. In this paper we give an upper bound for pD.
The upper bound contributes to one of the problems.

Key words: Ono’s number; class number.

1. Introduction. Let kD be an imaginary
quadratic field with discriminant −D. We denote by
hD the class number of kD. We put ωD :=

√
−D/4

or ωD := (1+
√
−D)/2 according as D ≡ 0 mod 4 or

D ≡ 3 mod 4. We put fD(x) := N(x+ωD), where N
is the norm mapping. We define the natural number
pD by

pD := max
{

ν(fD(x))
∣∣∣∣ x ∈ Z ∩

[
0,

D

4
− 1
]}

if D 6= 3, 4, and pD = 1 if D = 3, 4, where ν(n) is the
number of (not necessarily distinct) prime factors of
n (cf. [2], [3]). We call the number pD Ono’s num-
ber. By using pD, we can formulate the Frobenius-
Rabinowitsch Theorem as follows:

pD = 1 if and only if hD = 1.

T. Ono conjectured:
(i) pD = 2 if and only if hD = 2;
(ii) pD ≤ hD,
both of which were proved by R. Sasaki [5]. Further-
more, T. Ono raised the problem to examine whether
hD ≤ 2pD holds. H. Wada verified the inequality for
D whose square-free part is less than or equal to
8173, by computer (cf. [3]; p. 57).

In this paper, we give an upper bound for pD.
By using the upper bound, we show that there exist
infinitely many D such that hD ≤ 2pD does not hold.
More generally, we prove:

Theorem 1. Let c be a positive number which
is greater than one. Then there exist infinitely many
D such that hD > cpD .

2. An upper bound for pD. We denote by
tD the number of distinct prime divisors of D. We
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denote by qD the smallest prime number which splits
completely in kD.

Lemma 2. The inequality ν(gcd(D, fD(x))) ≤
tD holds for each integer x such that 0 ≤ x ≤ D/4−
1. The equality holds if and only if D ≡ 0 mod 4,
D/4 ≡ 2 mod 4 and x = 0.

Proof. We first consider the case of D ≡ 0 mod
4. Since D/4 ≡ 1, 2 mod 4, 22 does not divide
x2+D/4 for each x. Since D/4 is square-free, we have
ν(gcd(D, fD(x))) ≤ tD. Suppose that the equality
ν(gcd(D, fD(x))) = tD holds. Then D/4 divides
fD(x). Since D/4 is square-free, we see that D/4
divides x. Together with the condition 0 ≤ x ≤
D/4 − 1, we see x = 0. It follows from tD =
ν(gcd(D, fD(0))) = ν(D/4) that D/4 ≡ 2 mod 4.
Conversely it is clear that the equality holds for
D/4 ≡ 2 mod 4 and x = 0.

Secondly we consider the case of D ≡ 3 mod 4.
Since D is square-free, we have ν(gcd(D, fD(x)))
≤ tD. Suppose that the equality ν(gcd(D, fD(x))) =
tD holds. Then D divides fD(x). Consequently we
see that D divides 2x+1, which contradicts the con-
dition 0 ≤ x ≤ D/4− 1. Thus the equality does not
hold in this case.

Lemma 3. The inequality max{fD(x) | x ∈
Z ∩ [0, D/4− 1]} < (D/4)2 holds for D ≥ 7.

Proof. If D ≡ 0 mod 4 and D ≥ 8, then

fD(x) ≤
(

D

4
− 1
)2

+
D

4
<

(
D

4

)2

for each integer x in [0, D/4 − 1]. If D ≡ 3 mod 4
and D ≥ 7, then

fD(x) ≤
(

D − 7
4

)2

+
(

D − 7
4

)
+

D + 1
4

<

(
D

4

)2

for each integer x in [0, D/4 − 1]. Thus Lemma 3
follows.
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Now we have the following upper bound for pD.
Proposition 4 (cf. [2]; p. 112). The inequality

pD < tD − 1 + logqD
(D/4)2 holds for D ≥ 7.

Proof. Since for each integer x the principal
ideal (x + ωD) is primitive, fD(x) is not divided by
any prime number which remains prime in kD. By
the same reason, fD(x) is not divided by the second
power of any prime number which ramifies in kD. By
definition, pD = ν(fD(x0)) for some x0. We can put

fD(x0) = ap1 · · · pr,

where a := gcd(D, fD(x0)) and pi is a prime number
which splits completely in kD.

By Lemma 3, we have

qr
D ≤ p1 · · · pr ≤ fD(x0) <

(
D

4

)2

,

and consequently, we have

r < logqD

(
D

4

)2

.

On the other hand, it follows from Lemma 2
that ν(a) ≤ tD − 1 except for the case where D ≡
0 mod 4, D/4 ≡ 2 mod 4 and x0 = 0. Since pD =
ν(a) + r, Proposition 4 follows except for this case.
The exceptional case reduces to the case of x0 6= 0
as follows. In the exceptional case, the inequalities

pD ≥ ν

(
fD

(
D

4p

))
= ν

(
D

4p

)
+ ν

(
D

4p
+ p

)
≥ ν(fD(0)) = pD

hold for a prime divisor p of D/4. Thus we can take
D/4p instead of 0 as x0.

As a corollary of Proposition 4, we give another
upper bound for pD in terms of the exponent eD of
the ideal class group of kD.

Corollary 5. The inequality pD < 2eD+tD−1
holds for D ≥ 7.

Proof. We note that the norm of each primitive
principal ideal is greater than or equal to D/4. Since
the n-th power of a prime ideal lying above qD in
kD is primitive for each natural number n, it follows
from Proposition 4 that

eD ≥ logqD

D

4
>

pD − tD + 1
2

for D ≥ 7. Thus we obtain Corollary 5.
3. Proof of Theorem 1. We first show that

hD > cpD for D satisfying the conditions (i)-(iii) as
below. Secondly we show that there exist infinitely
many such D.

Let ε be a non-zero positive number less than
one. Then, by the theorem of Siegel [6], there exists
a constant D0(ε) such that

1− ε <
log hD

log
√

D
< 1 + ε

holds for D ≥ D0(ε). Thus

D(1−ε)/2 < hD(1)

holds for D ≥ D0(ε).
Let ` be an odd prime number such that

` > c4/(1−ε).(2)

We suppose that we can take D1, as D, satisfying
the following conditions:
(i) D1 ≥ max{D0(ε), 7};
(ii) tD1 = 1;
(iii) qD1 = `.
Then it follows from Proposition 4 that

pD1 < log`

(
D1

4

)2

<
2

logc `
× logc D1.(3)

Since 2/ logc ` < (1 − ε)/2 from (2), it follows from
(3) that

cpD1 < D
(1−ε)/2
1 .(4)

Thus, by (i) and (1), the inequality cpD1 < hD1 is
verified.

Indeed, D1 satisfies the condition (ii) if D1 is an
odd prime number such that D1 ≡ 3 mod 4. Further-
more the condition (iii) is equivalent to the following
simultaneous congruences:
(iiia) (−D1/p) = 0,−1 for each prime number p < `;
(iiib) (−D1/`) = 1,
where (−D1/p) is the Kronecker symbol. Hence, by
virtue of Dirichlet’s theorem on prime numbers in
arithmetic progressions, there exist infinitely many
D1 satisfying the conditions (i)-(iii).

This completes the proof of Theorem 1.
Remark 6. The smallest value of D for which

hD > 2pD takes place is D = 37123. Then we have
h37123 = 17 and p37123 = 4.
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