On the defining relations of the simply-laced elliptic Lie algebras

By Tadayoshi Takebayashi

College of Industrial Technology, Nihon University, 1-2-1, Izumicho, Narashino, Chiba 275-8575 (Communicated by Heisuke HIRONAKA, M. J. A., Sept. 12, 2001)

We rewrite the defining relations [5] of the simply-laced elliptic Lie algebras in Abstract: terms of the extended elliptic Cartan matrix by considering the extended elliptic diagram.

Key words: Elliptic root system; elliptic Lie algebra; elliptic Cartan matrix.

1. Introduction. K. Saito and D. Yoshii [5] introduced the simply-laced elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ for the simply-laced elliptic root system R ([4]), whose derived algebra $\mathfrak{g}(R) := [\tilde{\mathfrak{g}}(R), \tilde{\mathfrak{g}}(R)]$ is isomorphic to 2-toroidal Lie algebra [3] which is the universal central extension of the tensor of a Lie algebra with the Laurent series of two variables. According to the work of Borchards [2], they consider a Lie algebra V_Q/DV_Q as a quotient of the vertex algebra V_Q attached to an even lattice Q, and constructed the elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ as a subalgebra of V_Q/DV_Q . If R is a simply-laced finite or affine root system, then $\mathfrak{g}(R)$ is isomorphic to a finite or affine Kac-Moody algebra [1], respectively. The defining relations of the generators of $\tilde{\mathfrak{g}}(R)$ in terms of the elliptic diagram have been described in [5]. In this article, we rewrite the defining relations more simply by considering the extended elliptic diagram consisting of all pairs of α_i , α_i^* $(0 \le i \le l)$ for the sake of explicitness, although the results are already intrinsically in [5].

2. Simply-laced elliptic Lie algebras.

We recall the elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ and its defining relations. Let $\Gamma_{\rm ell} = \Gamma(R,G)$ be the elliptic diagram of a simply-laced marked elliptic root system (R, G)([4], [5]). Let Q(R) be the root lattice and F_Q := $\mathbf{Q} \otimes_{\mathbf{Z}} Q(R)$. Let $(F_{\mathbf{Q}}, I)$ be its non degenerate hull and $\tilde{\mathfrak{h}} := \operatorname{Hom}_{\mathbf{Q}}(F_{\mathbf{Q}}, \mathbf{Q})$. Explicitly, $R = R_f + \mathbf{Z}b +$ $\mathbf{Z}a, Q(R) = Q_f \oplus \mathbf{Z}b \oplus \mathbf{Z}a, \widetilde{F}_{\mathbf{Q}} = F_{\mathbf{Q}} \oplus \mathbf{Q}\Lambda_b \oplus \mathbf{Q}\Lambda_a,$ and $\tilde{I}(\Lambda_a, a) = \tilde{I}(\Lambda_b, b) = 1$, $\tilde{I}(\Lambda_a, b) = \tilde{I}(\Lambda_b, a) =$ $0, \tilde{I}(\Lambda_a, \Gamma_f) = \tilde{I}(\Lambda_b, \Gamma_f) = 0, \text{ where } R_f, Q_f \text{ and } I$ Γ_f are the finite root, root lattice and Dynkin diagram, respectively. Further, $\hat{\mathfrak{h}} = \mathfrak{h}_f \oplus \mathbf{Q} h_{a^{\vee}} \oplus \mathbf{Q} h_{b^{\vee}} \oplus$ $\mathbf{Q}h_{\Lambda_a} \oplus \mathbf{Q}h_{\Lambda_b} = \bigoplus_{\alpha \in \Gamma_{\text{ell}}} \mathbf{Q}h_{\alpha^{\vee}} \oplus \mathbf{Q}h_{\Lambda_a} \oplus \mathbf{Q}h_{\Lambda_b}, \, \mathfrak{h}_f :=$ $\bigoplus_{\alpha \in \Gamma_f} \mathbf{Q} h_{\alpha^{\vee}}, \ \alpha^{\vee} := 2\alpha/\{I(\alpha,\alpha)\} \text{ for } \alpha \in \Gamma_{\text{ell}}, \text{ with }$ the inner product $\langle h_x, y \rangle := \tilde{I}(x, y)$ for $x, y \in F_{\mathbf{Q}}$.

Definition 2.1 (K. Saito and D. Yoshii [5]). The elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ is the algebra generated by the following generators and relations. generators: $\tilde{\mathfrak{h}}$ and $\{E^{\alpha} \mid \alpha \in \pm \Gamma_{\text{ell}}\}$ relations:

0. $\tilde{\mathfrak{h}}$ is abelian

I.
$$[h, E^{\alpha}] = \langle h, \alpha \rangle E^{\alpha}$$

II.1.
$$[E^{\alpha}, E^{-\alpha}] = -h_{\alpha^{\vee}}$$

 $[E^{\alpha}, E^{\beta}] = 0 \text{ for } I(\alpha, \beta) \ge 0$

II.2.
$$(adE^{\alpha})^{1-\langle h_{\alpha^{\vee}},\beta\rangle}E^{\beta} = 0$$
 for $I(\alpha,\beta) \leq 0$

III.
$$(adE^{\alpha})^{1-(h_{\alpha}\sqrt{\beta})}E^{\beta} = 0$$
 for $I(\alpha, \beta) \le 0$
III. $[[E^{\alpha}, E^{\beta}], E^{\beta^*}] = 0$ for $[[E^{-\alpha}, E^{-\beta}], E^{-\beta^*}] = 0$

IV.
$$[[[E^{\alpha}, E^{\beta}], E^{\gamma}], E^{\beta^*}] = 0$$
 for
$$[[[E^{-\alpha}, E^{-\beta}], E^{-\gamma}], E^{-\beta^*}] = 0$$

V.
$$[[E^{\alpha^*}, E^{-\alpha}], E^{\beta}] = E^{\beta^*}$$
 for
$$\alpha^* \quad \beta^*$$

$$[[E^{-\alpha^*}, E^{\alpha}], E^{-\beta}] = E^{-\beta^*}$$

where h runs over \mathfrak{h} in I, α , β run over $\pm \Gamma_{\text{ell}}$ in I, II, and α, β, γ run over $\pm \Gamma_{af}$ in III, IV and V.

We set $e_{\alpha}:=E^{\alpha}$, $f_{\alpha}:=-E^{-\alpha}$ for $\alpha\in\Gamma_{\mathrm{ell}}$ (i.e. $e_{\alpha}^{*}:=e_{\alpha^{*}}=E^{\alpha^{*}}$, $f_{\alpha}^{*}:=f_{\alpha^{*}}=-E^{-\alpha^{*}}$), and set $a_{\alpha\beta} := I(\alpha^{\vee}, \beta)$, then the matrix $(a_{\alpha\beta})_{\alpha,\beta\in\Gamma_{\text{ell}}}$ is called the elliptic Cartan matrix. Now we normalize $I(\alpha,\alpha)=2$ so that $\alpha^{\vee}=\alpha$, then using the above

conventions, the defining relations are rewritten as follows:

Lemma 2.2. The elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ is described by the following generators and relations. generators: $\tilde{\mathfrak{h}}$ and e_{α} , f_{α} for $\alpha \in \Gamma_{\mathrm{ell}}$ relations:

0. $\tilde{\mathfrak{h}}$ is abelian

I.
$$[h, e_{\alpha}] = \langle h, \alpha \rangle e_{\alpha}$$

 $[h, f_{\alpha}] = -\langle h, \alpha \rangle f_{\alpha}$

II.1.
$$[e_{\alpha}, f_{\alpha}] = h_{\alpha}$$

 $[e_{\alpha}, f_{\beta}] = 0$ if $a_{\alpha\beta} \le 0$

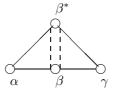
II.2.
$$[e_{\alpha}, e_{\alpha}^*] = 0$$
, $[f_{\alpha}, f_{\alpha}^*] = 0$

II.3.
$$(ade_{\alpha})^{1-a_{\alpha\beta}}e_{\beta} = 0$$
 if $a_{\alpha\beta} \le 0$
 $(adf_{\alpha})^{1-a_{\alpha\beta}}f_{\beta} = 0$ if $a_{\alpha\beta} \le 0$

III.
$$ade_{\beta}^*ade_{\beta}e_{\alpha} = 0$$
 for $adf_{\beta}^*adf_{\beta}f_{\alpha} = 0$

IV.
$$ade_{\beta}^* ade_{\gamma} ade_{\beta} e_{\alpha} = 0$$

 $adf_{\beta}^* adf_{\gamma} adf_{\beta} f_{\alpha} = 0$ for



V.
$$ade_{\beta}ade_{\alpha}^*f_{\alpha} = e_{\beta}^*$$
 for α^* $adf_{\beta}adf_{\alpha}^*e_{\alpha} = f_{\beta}^*$

Remark 2.3. We have the relations $[h_{\alpha}, e_{\beta}] = a_{\alpha\beta}e_{\beta}$, $[h_{\alpha}, f_{\beta}] = -a_{\alpha\beta}f_{\beta}$.

3. The main theorem. We consider the extended elliptic diagram $\Gamma_{\rm ell}$ consisting of all pairs of α_i , α_i^* ($0 \le i \le l$), if necessary, by adding some vertices α_i^* to $\Gamma_{\rm ell}$. In what follows, we consider $\Gamma_{\rm ell}$ instead of $\Gamma_{\rm ell}$. In the following diagram (3.1), we define $e_{\alpha_1}^* := ade_{\alpha_1}ade_{\alpha_0}^*f_{\alpha_0}$, $f_{\alpha_1}^* := adf_{\alpha_1}adf_{\alpha_0}^*e_{\alpha_0}$ and inductively $e_{\alpha_i}^*$, $f_{\alpha_i}^*$ for all added vertices α_i (see [5]),

Then from the results of [5] (Theorem 4.1 and its proof, i.e. from the realization of $\tilde{\mathfrak{g}}(R)$ by the vertex algebra and the relations of the corresponding elements in the vertex algebra), we can regard $\tilde{\mathfrak{g}}(R)$ as the Lie algebra generated by the elements e_{α} , e_{α}^{*} , f_{α} , f_{α}^{*} for $\alpha \in \{\alpha_{0}, \ldots, \alpha_{l}\}$ with the relations in Lemma 2.2

Lemma 3.1. For α , $\beta \in \{\alpha_0, ..., \alpha_l\}$, there hold the following relations.

(i)
$$[e_{\alpha}, e_{\beta}^*] = [e_{\alpha}^*, e_{\beta}]$$

(ii)
$$[f_{\alpha}, f_{\beta}^*] = [f_{\alpha}^*, f_{\beta}]$$

Proof. (i) When $a_{\alpha\beta} \geq 0$, the two sides of the equation (i) vanish, and when $a_{\alpha\beta} = -1$, by using the relation V in Lemma 2.2,

$$\begin{split} [e_{\beta}^*, e_{\alpha}] &= [ade_{\beta}ade_{\alpha}^* f_{\alpha}, e_{\alpha}] \\ &= [[e_{\beta}, [e_{\alpha}^*, f_{\alpha}]], e_{\alpha}] \\ &= -[[f_{\alpha}, [e_{\beta}, e_{\alpha}^*]], e_{\alpha}] \quad \text{(by } [f_{\alpha}, e_{\beta}] = 0) \\ &= [[e_{\alpha}, f_{\alpha}], [e_{\beta}, e_{\alpha}^*]] \quad \text{(by } [[e_{\beta}, e_{\alpha}^*], e_{\alpha}] = 0) \\ &= [h_{\alpha}, [e_{\beta}, e_{\alpha}^*]] \\ &= -[e_{\beta}, [e_{\alpha}^*, h_{\alpha}]] - [e_{\alpha}^*, [h_{\alpha}, e_{\beta}]] \\ &= 2[e_{\beta}, e_{\alpha}^*] + [e_{\alpha}^*, e_{\beta}] \\ &= [e_{\beta}, e_{\alpha}^*] \end{split}$$

so we get (i), and (ii) is similar.

Theorem 3.2. The elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ is described by the following generators and relations. generators: $\tilde{\mathfrak{h}}$ and e_{α} , f_{α} for $\alpha \in \widetilde{\Gamma_{\text{ell}}}$ relations:

0. $\hat{\mathfrak{h}}$ is abelian

I.
$$[h, e_{\alpha}] = \langle h, \alpha \rangle e_{\alpha}$$

 $[h, f_{\alpha}] = -\langle h, \alpha \rangle f_{\alpha}$

$$\begin{split} \text{II.1.} \quad [e_\alpha,f_\alpha] &= h_\alpha \\ [e_\alpha,f_\beta] &= 0 \quad \textit{if } a_{\alpha\beta} \leq 0 \end{split}$$

II.2.
$$[e_{\alpha}, e_{\alpha}^*] = 0, [f_{\alpha}, f_{\alpha}^*] = 0$$

II.3.
$$(ade_{\alpha})^{1-a_{\alpha\beta}}e_{\beta} = 0 \quad \text{if } a_{\alpha\beta} \le 0$$
$$(adf_{\alpha})^{1-a_{\alpha\beta}}f_{\beta} = 0 \quad \text{if } a_{\alpha\beta} \le 0$$

III.
$$[e_{\alpha}^*, e_{\beta}] = [e_{\alpha}, e_{\beta}^*], [f_{\alpha}^*, f_{\beta}] = [f_{\alpha}, f_{\beta}^*]$$

where h runs over $\tilde{\mathfrak{h}}$ in I, and α , β run over Γ_{ell} in I, II.1, II.3 and run over Γ_{af} in II.2, III.

Proof. It suffices to show that the relations III, IV, and V in Lemma 2.2 can be obtained from the relations in Theorem 3.2. We use the multi-bracket of length n ([5]),

$$[x_n,\ldots,x_3,x_2,x_1]:=[x_n,[x_{n-1},\cdots[x_3,[x_2,x_1]]\cdots]$$
 and the following identity ([5]), for $1< s\leq n,$

$$\begin{split} &[y,x_n,\ldots,x_3,x_2,x_1]\\ &= [x_n,\ldots,x_{s+1},x_s,y,x_{s-1},\ldots,x_1]\\ &+ [x_n,\ldots,x_{s+1},[y,x_s],x_{s-1},\ldots,x_1]\\ &+ [x_n,\ldots,[y,x_{s+1}],x_s,x_{s-1},\ldots,x_1] + \cdots\\ &\cdots + [[y,x_n],\ldots,x_{s+1},x_s,x_{s-1},\ldots,x_1]. \end{split}$$

III.
$$\begin{aligned} ade_{\beta}^*ade_{\beta}e_{\alpha} \\ &= [e_{\beta}^*, e_{\beta}, e_{\alpha}] \\ &= [e_{\beta}, [e_{\beta}^*, e_{\alpha}]] + [[e_{\beta^*}, e_{\beta}], e_{\alpha}] \\ &= [e_{\beta}, [e_{\beta}, e_{\alpha}^*]] \quad \text{(by II.2, III)} \\ &= 0 \quad \text{(by II.3)} \end{aligned}$$

$$\begin{split} \text{IV.} & & ade_{\beta}^* ade_{\gamma} ade_{\beta} e_{\alpha} \\ & = [e_{\beta}^*, e_{\gamma}, e_{\beta}, e_{\alpha}] \\ & = [[e_{\beta}^*, e_{\gamma}], e_{\beta}, e_{\alpha}] + [e_{\gamma}, [e_{\beta}^*, e_{\beta}], e_{\alpha}] \\ & = [[e_{\beta}, e_{\gamma}^*], e_{\beta}, e_{\alpha}] \quad \text{(by II.2, III)} \\ & = [[e_{\gamma}^*, e_{\beta}], e_{\alpha}, e_{\beta}] \\ & = [e_{\gamma}^*, e_{\beta}, e_{\alpha}, e_{\beta}] - [e_{\beta}, [e_{\gamma}^*, e_{\alpha}], e_{\beta}] \\ & = 0 \end{split}$$

V.
$$ade_{\beta}ade_{\alpha}^{*}f_{\alpha} \\ = [e_{\beta}, e_{\alpha}^{*}], f_{\alpha}] + [e_{\alpha}^{*}, [e_{\beta}, f_{\alpha}]] \\ = [[e_{\beta}^{*}, e_{\alpha}], f_{\alpha}] \\ = [[f_{\alpha}, e_{\alpha}], e_{\beta}^{*}] \\ = -[h_{\alpha}, e_{\beta}^{*}] \\ = e_{\beta}^{*}$$

so the proof is completed.

References

- [1] Victor, G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge Univ. Press, Cambridge (1990).
- [2] Richard, B.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. U.S.A., 83, 3068–3071 (1986).
- [3] Moody, R. V., Eswara Rao, S., and Yokonuma, T.: Toroidal Lie algebra and vertex representation. Geom. Dedicata, 35, 283–307 (1990).
- [4] Saito, K.: Extended affine root systems I (Coxeter transformations). Publ. RIMS, Kyoto Univ., 21, 75–179 (1985).
- [5] Saito, K., and Yoshii, D.: Extended affine root systems IV (Simply-laced elliptic Lie algebras). Publ. RIMS, Kyoto Univ., 36, 385–421 (2000).