Adelic Minkowski's second theorem over a division algebra

By Seiji KIMATA and Takao WATANABE

Department of Mathematics, Graduate School of Science, Osaka University, 1-16, Machikaneyama-machi, Toyonaka, Osaka 560-0043 (Communicated by Heisuke Hironaka, M. J. A., Dec. 12, 2000)

Abstract: We prove an analogue of Minkowski's second fundamental theorem for a vector space over a central division algebra in an adelic manner.

Key words: Minkowski's second fundamental theorem; successive minima.

0. Introduction. For a bounded o-symmetric convex body S in \mathbf{R}^n with volume V(S), Minkowski introduced successive minima $\lambda_1, \ldots, \lambda_n$ of S with respect to the lattice \mathbf{Z}^n and proved the second fundamental theorem;

(1)
$$\frac{2^n}{n!} \le \lambda_1 \cdots \lambda_n V(S) \le 2^n.$$

From an adelic viewpoint, this theorem was generalized first by Macfeat, and then by Bombieri and Vaaler as follows. Let k be an algebraic number field and $E = k^L$ the k-vector space. For a k-lattice M in E and a bounded o-symmetric convex body S in $E \otimes_{\mathbf{Q}} \mathbf{R}$, the successive minima $\lambda_1, \ldots, \lambda_L$ of S with respect to M is defined. Then an inequality analogous to (1) holds for $\lambda_1, \ldots, \lambda_L$ ([M, Theorem 5], [B-V, Theorems 3 and 6]).

The purpose of this paper is to generalize the Minkowski's second fundamental theorem to a vector space over a central division algebra D of an algebraic number field k. Let $E = D^L$ be a left D-vector space, Λ an order in D, M a Λ -lattice in E and Sa bounded o-symmetric convex body in $E \otimes_{\mathbf{Q}} \mathbf{R}$. In Section 1, we define successive minima of S with respect to M and give an upper estimate of the product of successive minima (Theorem 1). This result is regarded as a generalization of the second fundamental theorem over the Hamilton quaternion algebra due to Weyl ([We, Theorem 1**]). As will be mentioned after Theorem 1, it is observed that this upper estimate is equivalent to the upper estimate by Macfeat and Bombieri-Vaaler. In Section 2, we will give a lower estimate of the product of successive minima (Theorem 2). This result is a strict generalization of [B-V, Theorem 6].

1. An upper bound of successive minima. Let k be an algebraic number field, D a central division algebra of finite dimension over k and E an L-dimensional left vector space over D. A subset of D will be called an order of D if it is a subring containing 1 and a k-lattice. Let Λ be an order of D. A k-lattice of E will be called a Λ -lattice if it is a finitely generated left Λ -module.

For each place v of k, let $|\cdot|_v$ be the absolute value of the completion k_v of k at v normalized so that $|a|_v = \nu_v(aC)/\nu_v(C)$, where ν_v is a Haar measure of k_v and C is an arbitrary compact subset of k_v with nonzero measure. Let d be the degree of k over \mathbf{Q} , n^2 the degree of k over k. We set $k_v := k_v = k_v$, $k_v := k_v = k_v$, where $k_v := k_v = k_v$ is the set of all finite (resp. infinite) places of k.

For each $v \in P_{\infty}$, there is an isomorphism σ_v of D_v onto $M_{m_v}(K_v)$, where if v is an unramified real (resp. a ramified real and an imaginary) place, m_v equals n (resp. n/2 and n) and K_v denotes \mathbf{R} (resp. \mathbf{H} and \mathbf{C}). Let $\mathbf{e}_{ij}^{(v)}$ be matrix units of $M_{m_v}(\mathbf{R})$ and $\{u_l^{(v)}\}$ the canonical basis of K_v over \mathbf{R} . Then $\{\mathbf{e}_{ij}^{(v)} \otimes u_l^{(v)}\}$ is a basis of $M_{m_v}(K_v)$ over \mathbf{R} . By this basis, $M_{m_v}(K_v)$ is identified with $\mathbf{R}^{[K_v:\mathbf{R}]n^2}$, and a Haar measure μ_v on $M_{m_v}(K_v)$ is taken as

$$\mu_v := c \prod_{i=1}^{[K_v: \mathbf{R}] n^2} dx_i,$$

where dx_i is the usual Lebesgue measure on \mathbf{R} and c=1 or 2^{n^2} according as v is real or imaginary. We define a Haar measure α_v on D_v as a pull-back of μ_v by σ_v and set $\alpha_\infty := \prod_{v \in P_\infty} \alpha_v$. A Haar measure α_f on D_f is taken so that the volume of $D_{\mathbf{A}}/D$ equals 1 with respect to the measure $\alpha_\infty \times \alpha_f$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11H06; Secondary 11R56.

We denote by V the product measure $(\alpha_{\infty} \times \alpha_f)^L$ on $E_{\mathbf{A}} = (D_{\mathbf{A}})^L$.

Let Λ be an order of D and M a Λ -lattice. For $v \in P_f$, we set $M_v := \Lambda_v \otimes_{\Lambda} M$. For each $v \in P_{\infty}$, let S_v be a nonempty, open, convex, bounded and symmetric subset of E_v . Then the subset \mathcal{S} of $E_{\mathbf{A}}$ is defined to be

$$\mathcal{S} := \prod_{v \in P_{\infty}} S_v \times \prod_{v \in P_f} M_v.$$

Definition. Let S be as above. For each integer l, $1 \le l \le L$, let

 $\lambda_l := \inf\{\lambda > 0 : (\lambda S) \cap E \text{ contains } l \text{ linearly independent vectors }\},$

where λS denotes the set $\prod_{v \in P_{\infty}} \lambda S_v \times \prod_{v \in P_f} M_v$. Then $\lambda_1, \lambda_2, \dots, \lambda_L$ will be called the successive minima for S with respect to the subgroup E.

Theorem 1. Let S be as above. Then the successive minima $\lambda_1, \lambda_2, \ldots, \lambda_L$ satisfy the inequality

$$(\lambda_1 \lambda_2 \cdots \lambda_L)^{n^2 d} V(\mathcal{S}) \le 2^{n^2 dL}.$$

This theorem is proved by the same way to [B-V], so we omit its proof.

Obviously, [B-V, Theorem 3] is a special case, i.e. n=1, of Theorem 1. Conversely [B-V, Theorem 3] implies Theorem 1 as a consequence of the following fact;

Let S and $\lambda_1, \lambda_2, \ldots, \lambda_L$ be as in Theorem 1. Regarding E as a vector space over k, one has the successive minima $\lambda'_1, \lambda'_2, \ldots, \lambda'_{n^2L}$ for S in a sense of [B-V]. Then $\{\lambda_1, \ldots, \lambda_L\}$ is a subset of $\{\lambda'_1, \ldots, \lambda'_{n^2L}\}$ and $\lambda_i \leq \lambda'_{(i-1)n^2+1}$ holds for all i, $1 \leq i \leq L$.

2. A lower bound of successive minima. Let v be an infinite place of k. For $x \in D_v$ we define a norm $||x||_v$ by

$$||x||_v := \operatorname{tr}({}^t \overline{\sigma_v(x)} \sigma_v(x))^{1/2}.$$

Theorem 2. Let S be as in Theorem 1. In addition, assume that S satisfies the following condition:

For each infinite place $v, xS_v \subseteq S_v$ holds for all $x \in D_v$ with $||x||_v = 1$.

Then the successive minima $\lambda_1, \lambda_2, \dots, \lambda_L$ satisfy the inequality

$$\left(\frac{\{(n^2)!\sqrt{\pi}^{n^2}\}^L}{(n^2L)!\Gamma(n^2/2+1)^L}\right)^{r_1} \left(\frac{\{(2n^2)!(2\pi)^{n^2}\}^L}{(2n^2L)!\Gamma(n^2+1)^L}\right)^{r_2} \\
\leq (\lambda_1\lambda_2\cdots\lambda_L)^{n^2d}V(\mathcal{S}) \left(\alpha_{\infty}(D_{\infty}/\Lambda)\right)^L,$$

where r_1 (resp. r_2) is the number of real (resp. imaginary) places of k.

Proof. Since M is a Λ -lattice, M contains a basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_L\}$ of E over D. For each λ_l , $1 \leq l \leq L$, we may associate a vector \mathbf{u}_l in E such that $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_l\}$ are linearly independent over D and are contained in the set $(\lambda S) \cap E$ for any $\lambda > \lambda_l$. Let $U := {}^t(\mathbf{u}_1 \dots \mathbf{u}_L)$ be an $L \times L$ matrix. The map $\mathbf{x} \to \mathbf{x}U$ is an automorphism of $E_{\mathbf{A}}$, and by the product formula, the module of this automorphism is equal to 1, so that we have

$$V(\mathcal{S}) = V(\mathcal{S}U^{-1}).$$

The sets S_vU^{-1} , $v \in P_{\infty}$, and M_vU^{-1} , $v \in P_f$, have exactly the same properties as S_v and M_v . Thus the successive minima for SU^{-1} may be defined and are clearly equal to the successive minima $\lambda_1, \lambda_2, \ldots, \lambda_L$ for S. Now the vectors associated with the successive minima for SU^{-1} may be taken as $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_L$. Thus we may assume without loss of generality that $\mathbf{u}_l = \mathbf{e}_l$ to begin with.

For each $v \in P_{\infty}$, we define a subset S'_v of E_v as

$$S'_{v} := \left\{ \mathbf{T} = \sum_{l=1}^{L} T_{l} \mathbf{e}_{l} \in E_{v} \mid \sum_{l=1}^{L} \lambda_{l} ||T_{l}||_{v} < 1 \right\}.$$

For $\mathbf{T} = \sum_{l=1}^{L} T_l \mathbf{e}_l \in S'_v - \{0\}$, there exists c > 1 so that $c \sum_{l=1}^{L} \lambda_l ||T_l||_v = 1$. For each l whose $T_l \neq 0$, we have

$$T_l \mathbf{e}_l = c\lambda_l ||T_l||_v \frac{T_l}{||T_l||_v} \left(\frac{1}{c\lambda_l} \mathbf{e}_l\right).$$

Since $(1/c\lambda_l)\mathbf{e}_l$ is contained in S_v and $T_l/\|T_l\|_v$ is an element of D_v with $\|(T_l/\|T_l\|_v)\|_v = 1$, we have

$$\frac{T_l}{\|T_l\|_v} \left(\frac{1}{c\lambda_l} \mathbf{e}_l \right) \in S_v.$$

It follows from the convexity of S_v that $\sum_{l=1}^{L} T_l \mathbf{e}_l$ is contained in S_v . Thus S_v contains S'_v . The volume of S'_v is given as follows: if v is real,

$$\alpha_v^L(S_v') = \frac{1}{(\lambda_1 \cdots \lambda_L)^{n^2}} \frac{((n^2)! \sqrt{\pi}^{n^2})^L}{(n^2 L)! \Gamma(n^2 / 2 + 1)^L}$$

and if v is imaginary

$$\alpha_v^L(S_v') = \frac{1}{(\lambda_1 \cdots \lambda_L)^{2n^2}} \frac{((2n^2)!(2\pi)^{n^2})^L}{(2n^2L)!\Gamma(n^2+1)^L}.$$

Let $v \in P_f$. Since Λ -lattice M contains a basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_L\}$ of E over D, M_v contains $(\Lambda_v)^L$, and hence

$$\alpha_f \left(\prod_{v \in P_f} \Lambda_v \right)^L \le \alpha_f^L \left(\prod_{v \in P_f} M_v \right).$$

Since the sequence

$$0 \to \prod_{v \in P_f} \Lambda_v \to \left(D_\infty \prod_{v \in P_f} \Lambda_v \right) / \Lambda \to D_\infty / \Lambda \to 0$$

is exact and the volume of $D_{\mathbf{A}}/D = (D_{\infty} \prod_{v \in P_f} \Lambda_v + D)/D$ equals 1, we have

$$\alpha_{\infty}(D_{\infty}/\Lambda) = \alpha_f \left(\prod_{v \in P_f} \Lambda_v\right)^{-1}.$$

Let $S' \subseteq E_{\mathbf{A}}$ be defined by

$$\mathcal{S}' := \prod_{v \in P_{\infty}} S'_v \times \prod_{v \in P_f} (\Lambda_v)^L.$$

Then the volume of S' is equal to

$$V(S') = \frac{1}{(\lambda_1 \cdots \lambda_L)^{n^2 d}} \left(\frac{\{(n^2)! \sqrt{\pi}^{n^2}\}^L}{(n^2 L)! \Gamma(n^2 / 2 + 1)^L} \right)^{r_1} \times \left(\frac{\{(2n^2)! (2\pi)^{n^2}\}^L}{(2n^2 L)! \Gamma(n^2 + 1)^L} \right)^{r_2} (\alpha_{\infty} (D_{\infty} / \Lambda))^{-L}.$$

As $S' \subseteq S$ we have the inequality $V(S') \leq V(S)$. \square

References

- [B-V] Bombieri, E., and Vaaler, J.: On Siegel's Lemma. Invent. Math., 73, 11–32 (1983).
- [M] Macfeat, R. B.: Geometry of numbers in adele spaces. Dissertations Math. (Rozprawy Mat.), vol. 138, Instytut Matematyczny Polskiej Akademii Nauk, Warszawa (1971).
- [S] Siegel, C. L.: Lectures on Geometry of Numbers. Springer, Berlin-Heidelberg-New York (1989).
- [W] Weil, A.: Basic Number Theory. Springer, Berlin-Heidelberg-New York (1973).
- [We] Weyl, H.: Theory of reduction for arithmetical equivalence. Trans. Amer. Math. Soc., 48, 126– 164 (1940).