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Abstract:

We prove an analogue of Minkowski’s second fundamental theorem for a vector

space over a central division algebra in an adelic manner.
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0. Introduction. For a bounded o-symmet-
ric convex body S in R"™ with volume V(S5),
Minkowski introduced successive minima Aq,..., A\,
of S with respect to the lattice Z™ and proved the
second fundamental theorem;

n

2
(1) TS A AV(S) <2

From an adelic viewpoint, this theorem was gener-
alized first by Macfeat, and then by Bombieri and
Vaaler as follows. Let k be an algebraic number field
and E = k¥ the k-vector space. For a k-lattice M
in F and a bounded o-symmetric convex body S in
E ®q R, the successive minima Ay, ..., A of S with
respect to M is defined. Then an inequality anal-
ogous to (1) holds for A1,...,Ar ([M, Theorem 5],
[B-V, Theorems 3 and 6]).

The purpose of this paper is to generalize the
Minkowski’s second fundamental theorem to a vec-
tor space over a central division algebra D of an alge-
braic number field k. Let E = D be a left D-vector
space, A an order in D, M a A-lattice in F and S
a bounded o-symmetric convex body in F ®q R. In
Section 1, we define successive minima of S with re-
spect to M and give an upper estimate of the product
of successive minima (Theorem 1). This result is re-
garded as a generalization of the second fundamental
theorem over the Hamilton quaternion algebra due
to Weyl ([We, Theorem 1**]). As will be mentioned
after Theorem 1, it is observed that this upper esti-
mate is equivalent to the upper estimate by Macfeat
and Bombieri-Vaaler. In Section 2, we will give a
lower estimate of the product of successive minima
(Theorem 2). This result is a strict generalization of
[B-V, Theorem 6].
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1. An upper bound of successive min-
ima. Let k be an algebraic number field, D a cen-
tral division algebra of finite dimension over k and F
an L-dimensional left vector space over D. A subset
of D will be called an order of D if it is a subring
containing 1 and a k-lattice. Let A be an order of
D. A k-lattice of E will be called a A-lattice if it is
a finitely generated left A-module.

For each place v of k, let | - |, be the absolute
value of the completion k, of k& at v normalized so
that |a|, = vy (aC) /v, (C), where v, is a Haar mea-
sure of k, and C is an arbitrary compact subset
of k, with nonzero measure. Let d be the degree
of k over Q, n? the degree of D over k. We set
Dy = D®yky, Doo = [I,ep. Do, Dy = IT,ep, Do
and Da := Dy, x Dy, where Py (resp. Ps) is the set
of all finite (resp. infinte) places of k.

For each v € P, there is an isomorphism o, of
D, onto M,,, (K,), where if v is an unramified real
(resp. a ramified real and an imaginary) place, m,
equals n (resp. n/2 and n) and K, denotes R (resp.
H and C). Let ez(-;-)) be matrix units of M, (R)
and {ul(”)} the canonical basis of K, over R. Then
{ez(-;) ® ul(v)} is a basis of M, (K,) over R. By this
basis, M,,, (K,) is identified with RIEvRI" and a
Haar measure p,, on M,, (K,) is taken as

[K,:R]n?

Moy = C H dxh
i=1

where dz; is the usual Lebesgue measure on R and
c=1or2" according as v is real or imaginary. We
define a Haar measure «,, on D, as a pull-back of p,
by o, and set a := HUGPM a,. A Haar measure o
on Dy is taken so that the volume of Da /D equals
1 with respect to the measure s x oy.
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We denote by V' the product measure (as X
af)L on EA = (DA)L.

Let A be an order of D and M a A-lattice. For
v € Py, we set M, := A, ®x M. For each v € P,
let S, be a nonempty, open, convex, bounded and
symmetric subset of F,. Then the subset S of EA is
defined to be

S = H Sy X HM”'

VEPoo vEP;

Definition. Let S be as above. For each inte-
gerl, 1 <1l <L, let

A= 1inf{A > 0:(AS) N E contains [ linearly

independent vectors },

where AS denotes the set [[,cp AS, X HvePf M,.
Then A1, Ao, ..., Ar will be called the successive min-
ima for § with respect to the subgroup E.

Theorem 1. Let S be as above. Then the suc-
cessive minima A1, Az, ..., A, satisfy the inequality

(Atdg - AL) 4V (S) < 277dL,

This theorem is proved by the same way to
[B-V], so we omit its proof.

Obviously, [B-V, Theorem 3| is a special case,
ie. n =1, of Theorem 1. Conversely [B-V, The-
orem 3] implies Theorem 1 as a consequence of the
following fact;

Let § and A1, Aa,...,A\p be as in Theorem 1.

Regarding E as a wvector space over k, one has
the successive minima N, Ny, ..., A, for S in a

sense of [B-V]. Then {A1,..., AL} is a subset of
{ML - AL} and Ai < Xy holds for all i,
1<i< L.

2. A lower bound of successive minima.
Let v be an infinite place of k. For x € D, we define
a norm ||z||, by

]|y := tr(‘o, (2)o, ()2

Let S be as in Theorem 1. In
addition, assume that S satisfies the following con-
dition:
For each infinite place v, xS, C S, holds for all
x € D, with ||z||, = 1.
Then the successive minima A1, Ag, . .
inequality

Theorem 2.

., AL satisfy the

[Vol. T6(A),

( {2/} ) ( {(2n2)!(27)"" }2 ) :
(n2L)T(n2/2 + 1)L (2n2L)IT(n2 + 1)L

< (Adg - ALV (S) (o (Doo /AN,

where r1 (resp. ro) is the number of real (resp. imag-
inary) places of k.

Proof. Since M is a A-lattice, M contains a
basis {e1,es,...,ep} of E over D. For each \;, 1 <
| < L, we may associate a vector u; in E such that
{uy,us,...,w} are linearly independent over D and
are contained in the set (AS) N E for any A > \.
Let U :=t(u;...uy) be an L x L matrix. The map
x — xU is an automorphism of Fa, and by the
product formula, the module of this automorphism
is equal to 1, so that we have

V(S)=V(SU™).

The sets S, U1, v € Py, and M,U~!, v € Py, have
exactly the same properties as S, and M,,. Thus the
successive minima for SU~! may be defined and are
clearly equal to the successive minima A1, Ag, ..., AL
for S. Now the vectors associated with the succes-
sive minima for SU~! may be taken ase;, e, ..., er.
Thus we may assume without loss of generality that
u; = e; to begin with.

For each v € P,,, we define a subset S, of E,, as

L L
S = {T => Tie € B, | Y M|Tlls < 1}.
=1 =1

For T = ZzL:1 Tie, € S;, — {0}, there exists ¢ > 1 so
that chLZI Xl T1]|lo = 1. For each | whose T} # 0,
we have

T 1
Tie = eN[Til (mel) .

Since (1/cA;)e; is contained in S, and T;/||T|, is an
element of D, with |[(T;/||Ti]l.)|ls = 1, we have

A ( 1 )
— [ —e¢ | €8,.
1Tl \en™
It follows from the convexity of S, that ZZL=1 Tie; is

contained in S,. Thus S, contains S;. The volume
of S! is given as follows: if v is real,

akb(s!) = L ((”2>!ﬁn2)L
v T N A" (R2L) T (n2/2 + 1)L

and if v is imaginary
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L) L (@)

Q = .

v (A1 Ap)2"* (2n2L)!IT(n2 4+ 1)L
Let v € Py. Since A-lattice M contains a basis
{ei,es,...,er} of Eover D, M, contains (A,)%, and
hence

L
af H A, < af H M,
vE Py v€E Py

Since the sequence

0— HAU—> Do HA” /A — Dy /A —0

’UEPf ’UEPf

is exact and the volume of Da /D = (Deo [,ep, Avt
D)/D equals 1, we have

-1

oo (Do /A) =

1T 2

vePy
Let 8’ C EA be defined by

S= T six I ()™

vEP ve Py
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Then the volume of S’ is equal to

1 ( {(n)/7" Y )
v An)™d \ (RL)I0(n2/2 + 1)F

22 (2m)" 1L "2
() oo

As 8§’ C S we have the inequality V(S') < V(S). [

V(') =
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