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Ichimura-Sumida criterion for Iwasawa A-invariants
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Abstract:

For an odd prime number p and real abelian number fields k£ with the degree

[k : Q] = p in which p splits completely, we give a criterion for vanishing of Iwasawa A-invariants.

Key words:

1. Introduction. Let p be an odd prime
number, k a real abelian number field, k., the cy-
clotomic Z,-extension of k. Greenberg’s conjecture
asserts that the Iwasawa A-invariant A, (k) of koo over
k vanishes. In [3], [5] and [6], remarkable criteria of
Ap(k) = 0 were established when the degree [k : Q]
is prime to p. In this paper we deal with the case
[k: Q] =p.

All the auhors of [3], [5] and [6] had the same
idea to obtain their criteria by investigating deeply
the properties of cyclotomic units. But the formu-
lations of their criteria are not the same, because
of their different approaches. For example, in [3],
Ichimura and Sumida gave a criterion by using a
structure theorem of semi-local units modulo cyclo-
tomic units proved in [2]. When p splits completely
and [k : Q] = p, we shall give a criterion similar to [3]
by using Tsuji’s result in [9] in place of [2], which will
be applied to cyclic cubic fields to give new examples
of A\3(k) = 0.

2. Theorem. We begin by explaining the
notations. We denote as usual by Z and Q the ring
of rational integers and the field of the rational num-
bers, respectively.

For a positive integer n, we denote by (, a prim-
itive n-th root of unity. Let p be a fixed odd prime
number, Qp the algebraic closure of the p-adic num-
ber field Q, and © = Z,[¢,] the integer ring of
Q,(¢p). For a finite extension L over K, we denote
by Np,k the norm mapping of L over K.

For any algebraic number field F', we denote
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respectively by A,(F) and p,(F) the Iwasawa -
invariant and p-invariant associated to the ideal class
group of the cyclotomic Z,-extension Fio = U2 F),
over F' with its n-th layer F,.

Let k be a cyclic extension of Q of degree p with
conductor f and A = G(koo/Q) the Galois group
of ke over Q. We fix a topological generator ~y
of G(koo/k). In this paper, we shall always assume
that the prime number p splits completely in k.

Let x be a non-trivial Qp—valued character of
A, g, (T) the Iwasawa power series in the power se-
ries ring O[[T]] associated to the p-adic L-function

LP(S’X) by
gx((L+ fp)'7° = 1) = Ly(s,x)

for s € Z,, and P, (T') the distinguished polynomial
of gy (T'). We decompose

P(T) = P(T) -+ P(T)"

for some r > 1 and some natural numbers e;, where
P,(T)’s are some irreducible distinguished polynomi-
als in O[T] with P; # P; (i # j). We note that the
Iwasawa main conjecture and Kida’s formula imply
r>1.
Put v, = v, (T) = (1 +T)*" —1)/T for n > 1.
By the Leopoldt conjecture and Iwasawa main con-
jecture, which have already been proved in our case,
the abelian group OI[T]]/(P;,vy) is finite. We de-
note by p*m the exponent of O[[T]]/(P;,v,). Then
we can take a polynomial Xp, ,(T) = X;,(T) in
O[T satisfying
XinP; =p*"  (mod vy,)

for n > 1. Define a polynomial Y; ,,(S,T) in Z[S, T
by
Yin(X(0), T) = Xin(T)  (mod pr),

where o is a fixed generator of A.
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Let p, be the unique prime ideal of Q, lying
above p, Ej_ the group of units € of k,, satisfying
e =1 (mod p,) and Cq, the group of cyclotomic
units € of Q,, satisfying € = 1 (mod p,,). Put
P

Cn = NQ(Cfanrl)/kn(l - gfpn+l

Then ¢, is contained in Ej . Our main purpose is
to prove the following theorem and to give new ex-
amples of cyclic cubic fields k’s for which A5(k) = 0.
Theorem 2.1. Let p be an odd prime number
and k a cyclic extension of Q of degree p in which p
splits completely. Let vy, Cn, Yin, Ek,,Cq,,,p* ™, 0 be
as above. Then the following are equivalent:
(1) Ap(k) =0.
(2) There exists n > 1 such that there exists no el-
ement €y, of By, with
ern = (o)

(mod Cq,,)

foranyi (1<i<r).
Corollary 2.1. Assumptions and notations

being as above, we have \p(k) = 0, if there ewists
n > 1 such that

Cxi'”(a”y_l)(o_l) ¢ (Ekn)p“z n

(1<i<r).

3. Proof of Theorem. Now we consider
several O[[T]]-modules in order to prove the the-
orem. Let Z,[x] denote a free O-module of rank
one on which A acts via x. For any Z,[A]-module
M, we define the following O-module; M(x) =
M@z, (a)Zp[x].- Moreover we put Na = > 5 0 and
NaM = {>  caom|m e MN}. Then the following
is well-known.

Lemma 3.1 (cf. [5]). The O-module M(x) is
isomorphic to M/NaIM as Z,[A]-module.

Let L(ks) be the maximal unramified abelian
p-extension of ko, and M (ks ) the maximal abelian
p-extension of ko unramified outside p. Moreover
we put A = Zy[[T]], X = G(L(kw)/koo), X =
G(M (kso)/koo). Then we regard X and X as A[A]-
modules, where 1 + T acts as the fixed topological
generator v of G(koo/k). Then we have the following:

Lemma 3.2 (cf. [5]). We have NaX =0 and
NAX =0, which implies X(x) 2 X and X(x) = X.

Lemma 3.3. The A-invariant A, (k) is (p—1)
times the free O-rank of X (x).

Now we denote by Uy, the principal units of the
completion Q,;, of Q, at the prime p,, by E,, the
closure of Eq, in Up, and by Cy, the closure of Cq,

for any i

[Vol. T6(A),

. Put
‘/pn - {U = Up" ‘ NQ"PH/QZJ ('U,) = ]‘}
= m NQmFm /Q"Pn, (Upm)

m>n
(cf. [10, p. 310]). Then we have the following:

Lemma 3.4. The assumptions and notations
being as above, we have E, = Cp, =V,,..

Proof. Since the class number of Q,, is prime
to p, the group index (Eq, : Cq, ) is also prime to
p. This shows E, = C, .. Moreover the norm map-
ping is continuous, which shows E, C V, . Now
we assume Fy, GV, . Since M(Q,) = Qs implies
Uy, /By, = Zyp, the index (Uy, : V},, ) is finite. Put
(Up,, = Vp,) = p? then (1 +p)?" € V,, . This is a
contradiction. (]

Let B, be a prime ideal of k, lying above p,,
and Uy, the principal units of k,p,. We put

p
Un=1]]
i=1

in Uy,

P
Umgi and V, = HV ot
i=1
where
prn = {u € ngn | Nkn‘ﬁn/Qp(u) = 1}.

Then A[A] acts on U, in the obvious way. We fix an
isomorphism ¢ of Q,,;,, onto k,gy,. Then ¢ induces
an isomorphism ¢ : Uy, ®z, Z,[A] — U, as A[A]-
module in the obvious way.

Let ¢ : By, — U, be the diagonal embedding.
We note et = (38 7 ®0")? for ¢ € Ey,. We
identify U, with Uy, ®z, Zy[A] by ¢. Now, we de-
termine the structure of V,,(x) as an O[[T]]-module.
Since V,,, = Cj,, is generated by

1- an+1 p=l
NQ(C,,n+1)/Qn 1=yt

as A-module, V},, is isomorphic to A/v, A, where g
is a primitive root modulo p™*!. Hence we have

(1) Vi =2 A[A] /v, A[A],
which shows
2 Vu
= (A[A]/vp A[A]) /(NaA[A] + v A[A]) fr, A[A])
= A[A]/(NaA[A] + v A[A])
( [A]/NaA[A])/((NaA[A] + v A[A]) /NAA[A])
O[T /vnO[[T]].

Especially we have

~J i 71
(3) Va(y) =z =Y
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as Zp-module.

Let &, be the closure of (Ey, )" in U, and W;, =
Na(Vy).

Lemma 3.5. The above &, contains W,.

Proof. We note W,, = {>-7_ju®d" |ueV,}
Hence W, is the closure of {30 u?  ® o' | u €
Eq, } by Lemma 3.4. This shows W,, C &,. [

Put U = limU,, &€ = lim&, and W = lim W,.
Here the projective limits are taken with respect to
the relative norm. Then we have U = @Vn and
the projection U — V, is surjective by the definition
of V,,. Hence we have U = A[A] by (1), W = NaU
and U(x) = O[[T]]. Recall I = G(M (koo)/L(koo)),
which is isomorphic to U/E by class field theory.
Then we have

I() = (U/E)(x) = (U/E)/(EW/E) = U/e =1
U/W)/(E/W)

by Lemma 3.5. Hence we have the following exact
sequence of O[[T]]-modules by Lemma 3.2:

1

0—1I(x) = X(x) — X(x) — 0.

This implies ®x(T) = &;(T)Px(T) for the charac-
teristic polynomials ®;(T), ®x(T'), ®x(T) of O[[T]]-
modules I(x), X(x), X(x), respectively. Moreover
we have ®x(T) = Py (T') by the Iwasawa main con-
jecture. Put Q;(T) = P, (T)/P;(T). Then we have
the following;:

Lemma 3.6. The irreducible
P,(T) divides ®x(T) if and only if
(Vo /W) C E,/W,, for alln > 1.

Proof. We note V,,(x) = V,,/W, in our case.
Then the proof is essentially the same as in [5, p.
732]. []

Now, we denote ¢, by n, € U,. Let C), be
the closed subgroup of U,, generated by n,, as A[A]-
module and put C = @Cn. Then C' is a closed sub-
group of U generated by n = limn, as A[A]-module.
Then we have

polynomaial

U/C)(x) = (U/W) /[(CW/W)
= im(Un /W) /(Ca Wi /W)

Proof of Theorem 2.1. Our proof is essentially
the same as in [3, p. 733] except for using [9] and
dealing with W,,. By [9], there exists an element
u = limu, such that ulW generates U/W as O[[T7]-
module, ux =7 (mod W) and ubx = n, (mod Wh).
Hence
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CuW /W 2(POT]] + v O[T])) /va O[T

by (2). Hence we have

(4) 777)7((77,71 = uf“’/PX — UnX7’"P7Q7
=9 (mod W)

We suppose that there exists an element ¢, € &,
with nn' " = el""" (mod W,). Then we have
en” = ul "9 (mod W,) by (4). Hence &, =
u@* (mod W,,) by (3). This means (V,,/W,)% C
En/Wy. Conversely, we suppose that (V,/W,,)9 C
En/W,. Then there exists an element ¢, of &,
with u% = e, (mod W,), which shows it =
el (mod W,) by (4). The diagonal mapping
Eg, — &, induces an isomorphism FEj,, /Eg:m o
En/EP™"™ by [10, p. 75] which shows

(5 /50.)  (Ea. 22,
o~ (gn/wn) / (55”“”Wn/wn)

by the proof of Lemma 3.5. Since (Eq, : Cq,) is
prime to p, we have

(Br./Ca.) [ (Ca. 2" Ca.)
= (/W) /(2" W /W),

This shows our theorem. []

4. Examples. In [1], we studied As3-
invariants of cyclic cubic fields k£ of prime conductor
f in which 3 splits. We restricted our attention to
f’s such that f =1 (mod 32) and f # 1 (mod 3%).
Our method was based on the explicit construction
of the cyclotomic units in k; and succeeded in
proving Az(k) = 0 for some f’s. But there remain
three tough f’s for which we were not able to
determine Az(k), namely f =5527, 7219 and 8677.
In this section, we try to attack these f’s.

Since 32 is the highest power of 3 dividing f —1,
we see immediately that deg P, (T') = 2 by Kida’s
formula (cf. [4]). We have to examine whether P, (T')
is irreducible and factorize it when it is not irre-
ducible. We first note that g, (7") is constructed ex-
plicitly as follows. Put y* = wy~! with the Te-
ichmiiller character w modulo 3. Let

1 qn

S v (%) com

a=1
(a,qn)=1

be —1/2 times Stickelberger element for k,,((3). Here
qn = 3" f, T, is the Galois group G(Q,/Q) and

ST
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(Qr/a) denotes the Artin symbol. Let g,(T") be the
power series in O[[T]] associated to &, via correspon-
dence 1+7 — (Qn/(1+qo)), where (1+T)(1+T) =
1+qo. Then g,(T) =lim g,,(T) and g, (7)) is explic-
itly approximated by g,:

() gx(T) = gn(T)  (mod wn(T)),

where w, = wp(T) = (1 +7T)%" —1. Let = 1—(3
be a prime element of © = Z3[(3]. Since P, (T) is a
distinguished polynomial, we have a € 79, if P, (T)
has a root « in 9. The following lemma gives a
sufficient condition for reducibility of P, (T').

Let r < n be positive integers. If
there exists a representative ag of 79O /7?1 such
that

Lemma 4.1.

2n+1)

gn(ag) =0 (mod 7

and

gnlao) #0 ),

(here g), denotes the formal derivative of g,), then
P, (T') has a root a in mO. Furthermore,

(mod 7

2n+1—27‘).

a=ay (mod

Proof. Since g, (T) = P, (T)u, (T') with a unit
element u, (T) in O[[T]] and wy,(dp) = (1 + dp)*" —
1=0 (mod 72"*1), we have

Py (ag) =0 2”“)

(mod 7

by (5). Furthermore, since g, (1) = Py (T)u,(T) +
P (T)u, (T), we have

Pl(ag) #0 (mod 7" ")

again by (5). Then we apply Proposition 2 in [7] to
our case. L]
We note that if we have By € 79 such that

9n(80)/9,,(B0)* € O

then we can easily get ay in Lemma 4.1 by the New-
ton iteration

Biv1 = Bi — gn(Bi)/ 9 (5i)-

Example 4.1. Let f = 7219. Then

g4(T) = (27 + 153¢) + (98 + 145¢)T + (31 + 181¢) T?
+(160 + 225¢)T* + (87 + 140¢)T*
+(231 + 151¢)T° + (234 + 86¢)T°
+(12 4+ 125¢)T7 + (107 + 184¢)T®
+ higher terms (mod 3°),

[Vol. T6(A),

where ( = (3. By Lemma 4.1, we see that
P, (T') decomposes into a product of linear factors
Py (T)Py(T), where
P (T)=T - (12 +42¢)
P,(T)=T — (50 + 16¢)

(mod 77),
(mod 777).
Then a2 = 2 and a2 = 3. Namely the exponents
of O[[T)]/(P1,vs) and O[[T]]/(Pz,v2) are 3% and 33
respectively. So it is enough to determine X; o(7T)
modulo 32 or 33. In fact, we have
X1o(T) =3T +3T* + (3+60)T° +T7 (mod 3?),
X22(T) = (24 + 21¢) + (21 + 90T + 9(T?
+(6 4+ 30)T3 + (24 + 150)T* + (3 + 30)T°
+(54+160)T° +T7 (mod 3%)
and hence
Yia(o,y — 1) = (24 60) + Ty + 6% + (8 + 60)7°
+49* +39° + (5 + 60)7°
+~7  (mod 3?),
Yoo(0,v—1) = (22+190) + (16 + 210)y
+(15 4 30)7? + (10 + 40)7*
+(22 + 240)7* + (21 + 150)7°
+(25 4+ 160)7° + 97 (mod 3%).
Now it is a routine work to check whether an in-

We see that
is cube but not 9-th power in ko and

teger of ko is an odd power in kso.
CY1,2(01’Y—1)(U_1)

2
0?’2(0’771)(071) is also cube but not 9-th power in k5.

Hence we can conclude that Az(k) = 0 by Corollary
2.1.

Example 4.2. Let f = 8677. In a sim-
ilar manner to Example 4.1, we have P (T) =
P1 (T)PQ (T), where

P(T)=T — (15 + 174()
Py(T) =T — (197 + 151¢)

(mod 7°),
(mod 7°).

We have a2 = 2 and az» = 3. But 63/112(0,7,1)(071)

is 9-th power in k3. So we have to work in k3. In this
case, we have a1 3 = 3 and ap 3 = 4. Fortunately, we

see that c?;l’g’(g’vfl)(gfl) is 9-th power but not 27-th
power in k3 and C?""(aﬁ_l)(a_l) is cube but not 9-th
power in k3. Hence we can conclude that A\s(k) =0
by Corollary 2.1.

Next we consider the case that P, (T") does not
decompose into a product of linear factors. The fol-
lowing lemma gives a sufficient condition for irre-

ducibility of P, (T") when deg P, (T') = 2.
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Lemma 4.2. Let n be a positive integer. If
gn(z) #Z 0 (mod 7"*1) for any representative x of
7O /72" O then P (T) has no roots in O.

Proof. Let g, (T) = Py(T)u,(T) with a unit
element u, (T') in O[[T]]. If P,(x) = 0 for some x €
9O, then z € 7O and g, (x) = 0. We have g,(z) =
0 (mod 72" *1) from (5). [

When P, (T) has a irreducible factor P;(T") of
degree greater than one, we approximate P (T") by
gn(T) using the following lemma which can be proved
in the same way as Lemma 5 in [3].

Lemma 4.3. Assume that deg P (T) = 2. Let
T be a shift operator on O[[T]] defined by

T (i aiTi) = i a; T2
i=0 i=2

and let g (T) =
7(gn). Then

7 An(T) + T2Bo(T) with B, =

P(T) = 5 ;O(q)w (7037) ol (mod 3")
forn > 2.

Here, the definition of the operator o is the same
as in the proof of Proposition 7.2 in [10].

Example 4.3. Let f = 5527. Then

92(T) = 6T + 1972 + (8 4+ 6)T* + 7¢T*
+(5+20)T5 + (T4 7)TC + (7 +20)T7
+(6 4+ ¢)T® + higher terms (mod 3?).

We see that P, (T') = P;(T) is irreducible by Lemma
4.2 and obtain

P(T)=6T+ T (mod 3?)

by Lemma 4.3. From this, we see that the exponent
of O[[T]]/(P1,v1) is 3 and

lel(T) =1+7T (HlOd 3)

and hence

Yii(o,y—1) =+ (mod 3).

We see that cfl’l(g’wfl)(ail) is not cube in k7. Hence

we can conclude that Ag(k) = 0 by Corollary 2.1.
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Example 4.4. In [1], we have verified that
As(k) = 0 for seven f’s. We can also apply Corollary
2.1 to those f’s. We verified that A\3(k) = 0 by cal-
culations in ky for f =4933, 9001, 9901 and by those
in ko for f =3907, 6247, 7687, 8011.

For the case f =2269 and 6481, which could not
be treated in [1] because f = 1 (mod 3%), Ozaki and
Yamamoto showed A3z(k) = 0 in [8]. Therefore we
can conclude that A3(k) = 0 for all cyclic cubic fields
of prime conductor less than 10000.

Our method is applicable to k£ of non-prime con-
ductor. But the factorization of P, (1) becomes dif-
ficult along with the growth of deg P, (T').
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