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1. Introduction. Throughout the present
paper, by the dimension we mean the covering di-
mension dim. We shall consider a characterization
of a class of infinite dimensional metrizable spaces in
terms of K-approximations. In [5], Dydak-Mishra-
Shukla introduced a concept of a K-approximation of
a mapping to a metric simplicial complex and char-
acterized m-dimensional spaces and finitistic spaces
in terms of K-approximations. Let X be a space, K
a metric simplicial complex and f : X — K a con-
tinuous mapping. A mapping g : X — K is said to
be a K-approzimation of f if for each simplex o € K
and each z € X, f(x) € o implies g(x) € 0. A
K-approximation g : X — K of f is called an n-
dimensional K-approzimation if g(X) ¢ K™ and a
finite dimensional K-approzimation if g(X) c K(™)
for some natural number m, where K (™ denotes the
m-skelton of K.

The concept of finitistic spaces was introduced
by Swan [12] for working in fixed point theory and
is applied to the theory of transformation groups by
using the cohomological structures (cf. [1]). For a
family U of a space X the order ordU of U is defined
as follows: ord, U = {U e U : x € U}| for z € X
and ord = sup{ord, U : x € X}. We say a family
U has finite order if ord4 = n for some natural num-
ber n. A space X is said to be finitistic if every open
cover of X has an open refinement with finite order.
‘We notice that finitistic spaces are also called bound-
edly metacompact spaces (cf. [7]). It is obvious that
all compact spaces and all finite dimensional para-
compact spaces are finitistic spaces. More precisely,
we have a useful characterization of finitistic spaces.

Proposition ([5], [8]). A paracompact space X
is finitistic if and only if there is a compact subspace
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C of X such that dim F' < oo for every closed sub-

space F with FNC = 0.

The dimension-theoretic properties of finitistic
spaces are investigated by several authors (cf. [3],
[4], [5] and [8]). In particular, Dydak-Mishra-Shukla
([5]) proved the following.

Theorem A ([5]). For a paracompact space X
the following are equivalent.

(a) dim X <mn.

(b) For every metric simplicial compler K and ev-
ery continuous mapping f : X — K there is an
n-dimensional K -approzimation g of f.

(c) For every metric simplicial complex K and ev-
ery continuous mapping f : X — K there is
an n-dimensional K-approximation g of f such
that g|f =1 (K™) = f|f =1 (K™).

Theorem B ([5]). For a paracompact space X
the following are equivalent.

(a) X is a finitistic space.

(b) For every metric simplicial compler K and ev-
ery continuous mapping f : X — K there is a
finite dimensional K-approximation g of f.

(¢) For every integer m > —1, every metric simpli-
ctal complex K and every continuous mapping
f X — K there is a finite dimensional K-
approzimation g of f such that g|f~(K(™) =
FIFHE™).

The purpose of the present note is to extend
Theorem A to a class of metrizable spaces that have
strong large transfinite dimension.

For a metric space (X, p), a subset A of X and
e > 0 we denote Sc(A) ={x € X : p(z, A) <e}. We
denote the set of natural numbers by w. We refer the
reader to [6] and [11] for basic results in dimension
theory.

2. Results. We begin with the definition of
strong small transfinite dimension introduced by
Borst [2]. A normal space X is said to have strong
small transfinite dimension if for every non-empty
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closed set F' of X there is an open normal subspace
U of F such that dimU < oco. (We notice that
spaces that have strong small transfinite dimension
are called shallow spaces in [6].) Recall from [10]
that a normal space X has strong large transfinite
dimension if X has both large transfinite dimension
and strong small transfinite dimension. We use the
following characterization of spaces that have strong
large transfinite dimension. A normal space X is said
to be strongly countable-dimensional if X is a union
of countably many finite dimensional closed subsets.

Lemma 1 ([9, Proposition 2.2 and 2.3]). Let
X be a metrizable space. Then X has strong large
transfinite dimension if and only if X is finitistic
and strongly countable-dimensional.

The following is a main result of the pa-
per. For a space X we denote D(X) = {D :
D is a closed discrete subset of X}.

Theorem. For a metrizable space X the fol-
lowing are equivalent.

(a) X has strong large transfinite dimension.

(b) There is a function ¢ : D(X) — w such that
for every metric simplicial complex K and every
continuous mapping f : X — K there is a K-
approzimation g of f such that g(D) c K®(P)
for each D € D(X).

(¢) For every integer m > —1 there is a func-
tion ¢ : D(X) — w such that for every met-
ric simplicial compler K and every continuous
mapping f : X — K there is a finite dimen-
sional K -approzimation g of f such that g(D) C
KWP) for each D € D(X) and g|f~ (K™) =
FIfHE™).

Proof. (a) = (b): By Lemma 1 and Propo-
sition, there is a compact subset C' of X such that
dim F' < oo for each closed set F of X with FNC = 0.
For each i € w we put H; = X\S;,;(C) and dim H; =
m; < 00. Since C' is strongly countable-dimensional,
there is a countable closed cover {C; : i € w} of C
such that C; C C;41 and dim C; = n; < oo for each
i. Let D € D(X). Since C is compact, there is i
such that C N D C C;. On the other hand, there
is j such that j > ¢ and D\ C C H;. Then we
put (D) = Zizl(nk + my) +25. Let K be a met-
ric simplicial complex and f: X — K a continuous
mapping. For each vertex v of K let St(v, K) be
the union of geometric interiors of all simplexes of K
containing v as a vertex. Then {St(v, K) : v € KO}
is an open cover of K. It follows from an argument
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similar to [9, Theorem 3.6] that there are locally fi-
nite families of open sets Uy, and Vi, k € w, of X (U,
and Vi need not cover X ) which satisfy the following
conditions:

(1) Ck\U{Cll<k}CUUk CX\(HkU(U{Cl :

I <k})).

(2) Hk\U{Hl < k‘} C UVk C X\(Sl/k(C) @]

(U{H:i : 1 < k})).

(3) ordUy <nq+ng+---+ng+ k.

(4) ordVy, <mi+mo+---+my + k.

(5) Uy and Vi are refinements of {f~1(St(v,K)) :
ve KO,

Then W = Uy, U, UUg—; Vi is an open cover
of X such that sup{ord, W : x € D} < (D) for
each D € D(X). For each W € W there is v(W) €
K©) such that W C f~(St(v(W), K)). Let P be a
locally finite open refinement of W. For each P € P
there is W(P) € W such that P C W(P). Put
v(P) = v(W(P)) for each P € P. For each v € K
we put Q, = [J{P € P : v(P) = v}, and Q =
{Q,:ve KO}, Then Q is a locally finite open
cover of X such that Q, C f~1(St(v, K)) for each
v € K© and sup{ord, Q@ : x € D} < ¢(D) for each
D e D(X). Let {k, : v € KO} be a partition of
unity subordinated to Q. We define g : X — K as
9(x) = ek Fo(z)v, x € X. It is easy to see that
g is a K-approximation of f and g(D) c K¥P)) for
each D € D(X).

(b) = (a): For each z € X let p(x) = p({z}).
To show that X is strongly countable-dimensional,
let U be an open cover of X. By an argument similar
to [5, Theorem 2.1], we have an open refinement V
of U such that ord, V < p(z) + 1 for each z € X.
For each n we put 4, = {z € X : p(x) < n} and
X, = A,. It follows that X = |J;2, X,, and each
X, is closed subset of X with dim X,, < n (cf. [6,
Theorem 5.1.10]). Next, we suppose that X is not
finitistic. Then there is an open cover U of X such
that for every open refinement V of U sup{ord,, V :
n € w} = oo for some sequence A = {z,, : n € w} in
X. By an argument similar to [5, Theorem 2.1], it
follows that there is a locally finite open refinement
W of U such that sup{ord, W : z € D} < (D) for
each D € D(X). Hence A is not closed discrete in
X and hence A has an accumulation point xy. Then
ordy, W = oco. This contradicts the local finiteness
of W. Therefore, X is a finitistic space and hence, by
Lemma 1, X has strong large transfinite dimension.

To show the implication (a) = (c), we need the
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following.

Lemma 2 ([5, Corollary 1.7]). Let f : X —
K be a continuous mapping of a normal space X to a
metric simplicial complex K, A is a subset of X, n a
non-negative integer such that f(A) € K™ . Then,
there are an open set U of X and a K -approximation
g of f such that A C U, g|A = f|A and g|U is an
n-dimensional K -approximation of f|U.

(a) = (c): Let ¢ : D(X) — w be as in (b). We
put ¥(D) = max{m, (D)} for each D € D(X). Let
K be a metric simplicial complex and f: X — K
a continuous mapping. By Lemma 2, there are an
open set U of X and a K-approximation g; of f such
that f~'(K™)) C U, gu| f7H(K™) = fIf7H(K™)
and ¢1|U is an m-dimensional K-approximation of
flU. Then, by (b), there is a K-approximation g of
g1 such that go(D) € K®P) for each D € D(X).
Since X is finitistic, it follows from Theorem B that
there is a finite dimensional K-approximation gz of
g2. Then g3(D) ¢ K¥P)) for each D € D(X). Let
k : X — [0,1] be a continuous mapping such that
K(fH(KM™)) =1 and x(X \ U) = 0. We define
g(x) = k(z)-g1(x)+ (1 —kr(x))-g3(z) for each x € X.
It is easy to see that g is desired.

(¢) = (b) is obvious. This completes the proof.

[]

By the proof of the theorem, we have the fol-
lowing.

Corollary. For a paracompact space X the fol-
lowing are equivalent.

(a) X is a strongly countable-dimensional space.
(b) There is a function ¢ : X — w such that for
every metric simplicial complex K and every

continuous mapping f : X — K there is a K-

approzimation g of f such that g(z) € K(@®)

for each x € X.

(¢) For every integer m > —1 there is a function
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¥ X — w such that for every metric simpli-

cial complex K and every continuous mapping

f: X — K there is a K-approzimation g of f

such that g(z) € KW®) for each 2 € X and

gl 1K) = 7 (K),

We do not know whether the theorem holds for
paracompact spaces.
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