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1. Introduction. Throughout the present
paper, by the dimension we mean the covering di-
mension dim. We shall consider a characterization
of a class of infinite dimensional metrizable spaces in
terms of K-approximations. In [5], Dydak-Mishra-
Shukla introduced a concept of aK-approximation of
a mapping to a metric simplicial complex and char-
acterized n-dimensional spaces and finitistic spaces
in terms of K-approximations. Let X be a space, K
a metric simplicial complex and f : X → K a con-
tinuous mapping. A mapping g : X → K is said to
be a K-approximation of f if for each simplex σ ∈ K
and each x ∈ X, f(x) ∈ σ implies g(x) ∈ σ. A
K-approximation g : X → K of f is called an n-
dimensional K-approximation if g(X) ⊂ K(n) and a
finite dimensional K-approximation if g(X) ⊂ K(m)

for some natural number m, where K(m) denotes the
m-skelton of K.

The concept of finitistic spaces was introduced
by Swan [12] for working in fixed point theory and
is applied to the theory of transformation groups by
using the cohomological structures (cf. [1]). For a
family U of a space X the order ordU of U is defined
as follows: ordx U = |{U ∈ U : x ∈ U}| for x ∈ X

and ordU = sup{ordx U : x ∈ X}. We say a family
U has finite order if ordU = n for some natural num-
ber n. A space X is said to be finitistic if every open
cover of X has an open refinement with finite order.
We notice that finitistic spaces are also called bound-
edly metacompact spaces (cf. [7]). It is obvious that
all compact spaces and all finite dimensional para-
compact spaces are finitistic spaces. More precisely,
we have a useful characterization of finitistic spaces.

Proposition ([5], [8]). A paracompact space X
is finitistic if and only if there is a compact subspace
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C of X such that dimF < ∞ for every closed sub-
space F with F ∩ C = ∅.

The dimension-theoretic properties of finitistic
spaces are investigated by several authors (cf. [3],
[4], [5] and [8]). In particular, Dydak-Mishra-Shukla
([5]) proved the following.

Theorem A ([5]). For a paracompact space X
the following are equivalent.
(a) dimX ≤ n.
(b) For every metric simplicial complex K and ev-

ery continuous mapping f : X → K there is an
n-dimensional K-approximation g of f .

(c) For every metric simplicial complex K and ev-
ery continuous mapping f : X → K there is
an n-dimensional K-approximation g of f such
that g|f−1(K(n)) = f |f−1(K(n)).
Theorem B ([5]). For a paracompact space X

the following are equivalent.
(a) X is a finitistic space.
(b) For every metric simplicial complex K and ev-

ery continuous mapping f : X → K there is a
finite dimensional K-approximation g of f .

(c) For every integer m ≥ −1, every metric simpli-
cial complex K and every continuous mapping
f : X → K there is a finite dimensional K-
approximation g of f such that g|f−1(K(m)) =
f |f−1(K(m)).
The purpose of the present note is to extend

Theorem A to a class of metrizable spaces that have
strong large transfinite dimension.

For a metric space (X, ρ), a subset A of X and
ε > 0 we denote Sε(A) = {x ∈ X : ρ(x,A) < ε}. We
denote the set of natural numbers by ω. We refer the
reader to [6] and [11] for basic results in dimension
theory.

2. Results. We begin with the definition of
strong small transfinite dimension introduced by
Borst [2]. A normal space X is said to have strong
small transfinite dimension if for every non-empty
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closed set F of X there is an open normal subspace
U of F such that dimU < ∞. (We notice that
spaces that have strong small transfinite dimension
are called shallow spaces in [6].) Recall from [10]
that a normal space X has strong large transfinite
dimension if X has both large transfinite dimension
and strong small transfinite dimension. We use the
following characterization of spaces that have strong
large transfinite dimension. A normal spaceX is said
to be strongly countable-dimensional if X is a union
of countably many finite dimensional closed subsets.

Lemma 1 ([9, Proposition 2.2 and 2.3]). Let
X be a metrizable space. Then X has strong large
transfinite dimension if and only if X is finitistic
and strongly countable-dimensional.

The following is a main result of the pa-
per. For a space X we denote D(X) = {D :
D is a closed discrete subset of X}.

Theorem. For a metrizable space X the fol-
lowing are equivalent.
(a) X has strong large transfinite dimension.
(b) There is a function ϕ : D(X) → ω such that

for every metric simplicial complex K and every
continuous mapping f : X → K there is a K-
approximation g of f such that g(D) ⊂ K(ϕ(D))

for each D ∈ D(X).
(c) For every integer m ≥ −1 there is a func-

tion ψ : D(X) → ω such that for every met-
ric simplicial complex K and every continuous
mapping f : X → K there is a finite dimen-
sional K-approximation g of f such that g(D) ⊂
K(ψ(D)) for each D ∈ D(X) and g|f−1(K(m)) =
f |f−1(K(m)).

Proof . (a) ⇒ (b): By Lemma 1 and Propo-
sition, there is a compact subset C of X such that
dimF <∞ for each closed set F ofX with F∩C = ∅.
For each i ∈ ω we putHi = X\S1/i(C) and dimHi =
mi <∞. Since C is strongly countable-dimensional,
there is a countable closed cover {Ci : i ∈ ω} of C
such that Ci ⊂ Ci+1 and dimCi = ni < ∞ for each
i. Let D ∈ D(X). Since C is compact, there is i
such that C ∩ D ⊂ Ci. On the other hand, there
is j such that j ≥ i and D \ C ⊂ Hj . Then we
put ϕ(D) =

∑j
k=1(nk +mk) + 2j. Let K be a met-

ric simplicial complex and f : X → K a continuous
mapping. For each vertex v of K let St(v,K) be
the union of geometric interiors of all simplexes of K
containing v as a vertex. Then {St(v,K) : v ∈ K(0)}
is an open cover of K. It follows from an argument

similar to [9, Theorem 3.6] that there are locally fi-
nite families of open sets Uk and Vk, k ∈ ω, of X (Uk
and Vk need not cover X) which satisfy the following
conditions:

(1) Ck \
⋃
{Cl : l < k} ⊂

⋃
Uk ⊂ X \ (Hk ∪ (

⋃
{Cl :

l < k})).
(2) Hk \

⋃
{Hl : l < k} ⊂

⋃
Vk ⊂ X \ (S1/k(C) ∪

(
⋃
{Hl : l < k})).

(3) ordUk ≤ n1 + n2 + · · ·+ nk + k.
(4) ordVk ≤ m1 +m2 + · · ·+mk + k.
(5) Uk and Vk are refinements of {f−1(St(v,K)) :

v ∈ K(0)}.
Then W =

⋃∞
k=1 Uk ∪

⋃∞
k=1 Vk is an open cover

of X such that sup{ordxW : x ∈ D} ≤ ϕ(D) for
each D ∈ D(X). For each W ∈ W there is v(W ) ∈
K(0) such that W ⊂ f−1(St(v(W ),K)). Let P be a
locally finite open refinement of W. For each P ∈ P
there is W (P ) ∈ W such that P ⊂ W (P ). Put
v(P ) = v(W (P )) for each P ∈ P. For each v ∈ K(0)

we put Qv =
⋃
{P ∈ P : v(P ) = v}, and Q =

{Qv : v ∈ K(0)}. Then Q is a locally finite open
cover of X such that Qv ⊂ f−1(St(v,K)) for each
v ∈ K(0) and sup{ordxQ : x ∈ D} ≤ ϕ(D) for each
D ∈ D(X). Let {κv : v ∈ K(0)} be a partition of
unity subordinated to Q. We define g : X → K as
g(x) =

∑
v∈K(0) κv(x)·v, x ∈ X. It is easy to see that

g is a K-approximation of f and g(D) ⊂ K(ϕ(D)) for
each D ∈ D(X).

(b) ⇒ (a): For each x ∈ X let ϕ(x) = ϕ({x}).
To show that X is strongly countable-dimensional,
let U be an open cover of X. By an argument similar
to [5, Theorem 2.1], we have an open refinement V
of U such that ordx V ≤ ϕ(x) + 1 for each x ∈ X.
For each n we put An = {x ∈ X : ϕ(x) ≤ n} and
Xn = An. It follows that X =

⋃∞
n=1Xn and each

Xn is closed subset of X with dimXn ≤ n (cf. [6,
Theorem 5.1.10]). Next, we suppose that X is not
finitistic. Then there is an open cover U of X such
that for every open refinement V of U sup{ordxn V :
n ∈ ω} = ∞ for some sequence A = {xn : n ∈ ω} in
X. By an argument similar to [5, Theorem 2.1], it
follows that there is a locally finite open refinement
W of U such that sup{ordxW : x ∈ D} ≤ ϕ(D) for
each D ∈ D(X). Hence A is not closed discrete in
X and hence A has an accumulation point x0. Then
ordx0 W = ∞. This contradicts the local finiteness
of W. Therefore, X is a finitistic space and hence, by
Lemma 1, X has strong large transfinite dimension.

To show the implication (a) ⇒ (c), we need the
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following.
Lemma 2 ([5, Corollary 1.7]). Let f : X →

K be a continuous mapping of a normal space X to a
metric simplicial complex K, A is a subset of X, n a
non-negative integer such that f(A) ⊂ K(n). Then,
there are an open set U of X and a K-approximation
g of f such that A ⊂ U , g|A = f |A and g|U is an
n-dimensional K-approximation of f |U .

(a) ⇒ (c): Let ϕ : D(X) → ω be as in (b). We
put ψ(D) = max{m,ϕ(D)} for each D ∈ D(X). Let
K be a metric simplicial complex and f : X → K

a continuous mapping. By Lemma 2, there are an
open set U of X and a K-approximation g1 of f such
that f−1(K(m)) ⊂ U , g1|f−1(K(m)) = f |f−1(K(m))
and g1|U is an m-dimensional K-approximation of
f |U . Then, by (b), there is a K-approximation g2 of
g1 such that g2(D) ⊂ K(ϕ(D)) for each D ∈ D(X).
Since X is finitistic, it follows from Theorem B that
there is a finite dimensional K-approximation g3 of
g2. Then g3(D) ⊂ K(ϕ(D)) for each D ∈ D(X). Let
κ : X → [0, 1] be a continuous mapping such that
κ(f−1(K(m))) = 1 and κ(X \ U) = 0. We define
g(x) = κ(x) ·g1(x)+(1−κ(x)) ·g3(x) for each x ∈ X.
It is easy to see that g is desired.

(c) ⇒ (b) is obvious. This completes the proof.

By the proof of the theorem, we have the fol-
lowing.

Corollary. For a paracompact space X the fol-
lowing are equivalent.
(a) X is a strongly countable-dimensional space.
(b) There is a function ϕ : X → ω such that for

every metric simplicial complex K and every
continuous mapping f : X → K there is a K-
approximation g of f such that g(x) ∈ K(ϕ(x))

for each x ∈ X.
(c) For every integer m ≥ −1 there is a function

ψ : X → ω such that for every metric simpli-
cial complex K and every continuous mapping
f : X → K there is a K-approximation g of f
such that g(x) ∈ K(ψ(x)) for each x ∈ X and
g|f−1(K(m)) = f |f−1(K(m)).
We do not know whether the theorem holds for

paracompact spaces.
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