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Abstract" Terai presented the following conjecture" If a+ b c with a > 0, b > 0,
b n

c > 0, gcd (a, b, c) 1 and a even, then the diophantine equation x -t- c has the
only positive integral solution (x, m, n) (a, 2, 2). In this paper we prove that if (i) b is

a prime power, c-= 5 (rood 8), or (ii) c =- 5 (mod 8) is a prime power, then Terai’s conjec-
ture holds.

1. Introduction. In 1956, Jemanowicz [4]
conjectured that if a, b, c are Pythagorean tri-
ples, i.e. positive integers a, b, c satisfying a +
bx

c then the Diophantine equation
x y

a /b-c
has the only positive integral solution (x, y, z)

(2, 2, 2). When a, b, c take some special
Pythagorean triples, it was discussed by Sier-
pinski [14], C. Ko [5-10], J. R. Chen [2], Dem’-
janenko [3] and others.

In 1993, as an analogue of above conjecture,
Terai [16] presented the following"

bConjecture. If a + c with gcd (a, b,
c) 1 and a even, then the Diophantine equation

ben n(1) x + c
has the only positive integral solution (x, m, n)

(a, 2, 2).
Terai proved that if b and c are primes such

that (i) b+ 1-2c, (ii) d-1 or even if b-=
1 (mod 4), where d is the order of a prime di-
visor of [c] in the ideal class group of Q(v/- b),
then the conjecture holds. Further, he proved
that if b / 1 2c, b 20, c 200, then con-
jecture holds. Recently, X. Chen and M. Le [11]
proved that if b 1 (mod 16 ), b + 1 2c, b
and c are both odd primes, then the conjecture
holds, and P. Yuan and J. Wang [17] proved that
if b-= __+ 3 (mod 8) is a prime, then Terai’s con-

jecture holds.
In this paper, we consider Terai’s conjecture

when b or c is prime power. Then we prove the
following"
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Theorem 1. If b is a prime power, c-=
5(mod 8), then Terai’s conjecture holds.

Corollary. If 2k-t-1 is a prime, k--1 or
2(rnod 4), then the Diophantine equation

nx + (2k+ 1) (2k+2k+ 1)
has the only positive integral solution (x, m, n)

(2k + 2k, 2, 2).
Theorem 2. If c--= 5 (mod8)is a prime

power, then Terai’s conjecture holds.
2. Some lemmas. We use the following

lemmas to prove our theorems.
Lemma 1. If a, b, c are positive integers

bsatisfying a -t- c, where 2]a, gcd (a, b, c)
1, then

t ta-- 2st, b- s c- s +
where s > t> 0, gcd (s, t) 1 and s

t(rnod 2).
Lemma 2 (St0rmer [15]). The Diophantine

equation
x +1--2yn

has no solutions in integers x 1, y

_
1 and n

odd --3.
Lemma 3 (Ljunggren [12]). The Diophantine

equation
4

x +1--2y
has the only positive integral solutions (x, y)
(1, 1) and (239, 13).

Lemma 4 (Cao [1]). If p is an odd prime and
the Diophantine equation

p y2x +1-2 (ly[>l)
has integral solution x, y, then 2ply.

Now, we assume that a, b, c are Pythago-
rean triples with gcd (a, b, c) 1 and 21a.

Lemma 5. If c 5(mod 8), then we have
(b/c) (c/b) 1,

where (./.) denotes Jacobi’s symbol.
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Proof From Lemma 1, we have
t ta-2st, b-s ,c-s /

where s > t> 0, gcd (s, t) 1 and s
t(mod 2). Since c =- 5(rood 8), we have

(c/b) (b/c) (s2- t2/s / ) ((s / ) 2t2/s / t).
(- 2t/s + ) (- 1/s + ) (2/s + ) (t/s2+ ) 1.

Thus, the proof is completed. -Lemma 6. If c 5 (mod 8), then the integ-
ral solutions of equation (1} satisfy 21, 21.

Proof. Suppose equation (1) has positive in-

tegral solution (, m, n ). We have
nx --: c (modb),x -= b (modc).

Thus, by Lemma 5 we have
1- (c’/b) (c/b)’- (--1)"

1 (-- bm/c) (-- 1/c)(b/c)- (-- 1) m

and so 2Ira, 2In. The lemma is proved. [-]
3. Proof of theorems. Proof of Theorem 1.

Suppose (x, m, n) is a positive integral solution
of equation (1). By Lemma 6, put m- 2m1, n-
2nl, where ml and n are some positive integers.
Then equation (1) gives

b2ml 2n(2) x + c
Since god (a, b, c) 1, a + b2- c,21a, we

have god (b, c)--1 and 2A bc. Thus from (2)
and Lemma 1, we have
(3) x-- 2uv bm__ u
where g > v > 0, gcd (g, v 1 and g

v(mod 2). From bmx- u v in (3), we have
bin1(4) u- v 1, u + v

since b is a prime power and gcd (u--v, u-+-
v) 1. From (4) we have

u- (bin1+ 1)/2, v- (bml- 1)/2.
2 /)2Substituting these into cnl + in (3), we

have
(5) 2Cnl bm*+ 1, c> b> 1.
If n > 2, then without loss of generality, we may
assume that 4In1, or Pin1 (P is an odd prime).
By Lemma 2, (5) is impossible if P ln. If 41n,
then by Lemma 3, (5) gives

nl/4c 13, b 239
so m 1, b- 239, c- 13, a contradiction
since c > b.

If n 2, then by Lemma 4, (5) gives ml
2, be_> 0 When e 0 from 2c + 1 we
have b > c, a contradiction. When e 0, equa-
tion (5) gives

2c2- (bm/) 4 + 1, c b 1,
which is impossible (see [13], p. 18).

If /41 1, then (5) gives 2c- b2m/ 1. On
the other hand, since b is a prime power, from a

_]_b c gcd (a, b, c) 1 and 21a, we have
bc a--1 c+a:

and so 2c + 1. Thus ml 1. The Theorem
1 is proved. [--]

Proof of Theorem 2. Suppose (w, m, n) is

a positive integral solution of equation (1). From
Lemma 6, we have m- 2m, n- 2n, where m
and na are some positive integers. By Lemma 1,
we have b- u v, c- u + v,and(1) gives

(6) w- 2st, (u v) ml- s t,
(u + v) "1 s + t,

where u> v > 0, gcd (u, v) 1, u v (rood
2), and s > t > 0, gcd (s, t) 1 and s t(mod
2). From (u v)m ts ,we see that

s + t-- b, s-- t- b1, u v bibs,
where gcd (bl, b) 1, b and b are some posi-
tive integers. Hence

mlS- (b + b1) /2, t-- (b1- b)/2.
Substituting these into (u + v)- s + t in

(6), we have
h2m(7) 2(u2+ v)nx_ 2+ gcd(bz, b) 11

When 2[1, from (7) we see that b+h
2 (mod 16 since (u + v 1 1 (rood 8 ). But

bxb g v 3 (rood 8 since u + v
2m1 1 + 95(rood 8) If 2 m then +

10(rood 16), a contradiction. If 2[m1, then equa-
tion (7) gives that the equation

4 42z- x + y gcd (x, y) 1
has positive integral solution z- (u v)1/
1, which is impossible (see [13], p. 18).

2m + h2mWhen 2 Y ha, from (7) we have 2

10(rood 16). So 2 m. If m > 1, then Pimp,
p is an odd prime. From (7), we have

2ml/P P (b2ml/p)P
(u + v 2

2)n (51 -{-

2ml/P h2mt/P 2ml/P P 2ml/P Pbl -- "-2 (bl -- (b2
2 h2ml/p

__
h2m/p

Wl ’2

Since u + v is a prime power, gcd

b2ml/p + h2m/ (bm/p)p _[_ (bm/l,)p’’2

2ml/p
1 or2 "m’/ + b

2m/p p 2ml/P p

p, and P
(bi + (b

if u2+ v is a
b2mt/ + 2mt/

2

2ml/Ppower of p. Thus we have (bm*/ + )/2-
1, which is impossible.

Thus m 1. Then we show that n 1. If

b, b2 > 1, then we have
2n 2_

U < 2 (U + 2) nl b + b blb (u2_ 2) < u.
Since 2 n1, we obtain n 1.
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If b 1 or b 1, then we have
2n nl 4

u < 2(u2+v) (u- v) + 1< u.
Since 2 A n1, we obtain n 1.

This completes the proof of Theorem2. [--]
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