On the λ-invariants of totally real fields

By Jangheon $\mathrm{OH}^{*)}$
KIAS, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-012, Korea
(Communicated by Shokichi Iyanaga, M. J. A., Oct. 12, 1998)

1. Introduction. Let k be a number field and p be a prime number, and let $k=k_{0} \subset k_{1} \subset$ $\cdot \cdot \subset k_{n} \subset \cdot \cdot \subset k_{\infty}$ be the cyclotomic \boldsymbol{Z}_{p}-extension of k. We denote by $\mu_{p}(k), \lambda_{p}(k)$ the Iwasawa invariants of the cyclotomic \boldsymbol{Z}_{p}-extension of k. It is well-known that $\mu_{p}(k)$ vanishes for any abelian number field k. Greenberg's conjecture claims that both $\mu_{p}(k)$ and $\lambda_{p}(k)$ are zero for any totally real number field k. In this paper, we shall prove the following

Theorem 1. Let p and q be prime numbers such that $p \equiv 3 \bmod 8, q \equiv-1 \bmod 8, p \not \equiv$ 3 mod $16, q \not \equiv-1 \bmod 16$. Then the Iwasawa invariant $\lambda_{2}(\boldsymbol{Q}(\sqrt{p q}))$ is zero. Let p, q and r be prime numbers such that $p, q \equiv 3$ mod $8, p, q \not \equiv 3$ mod 16. $r \equiv 1$ mod $4, r \not \equiv 1$ mod 8 . Then the Iwasawa invariant $\lambda_{2}(\boldsymbol{Q}(\sqrt{p q r}))$ is zero if there is no element α in the unit group of $k_{1}=\boldsymbol{Q}(\sqrt{p q r}, \sqrt{2})$ such that $N_{k_{1} / Q_{1}} \alpha=-1$.

Let p and ℓ be odd prime numbers such that $p \equiv 1 \bmod \ell$. Let k be a subfield of degree ℓ of $\boldsymbol{Q}\left(\zeta_{p \ell^{2}}\right)$ in which p and ℓ ramify. Here $\zeta_{p \ell^{2}}$ is a primitive $p \ell^{2}$-th root of unity. We will prove the following

Theorem 2. Let p and ℓ be odd prime numbers such that $p \equiv 1 \bmod \ell, p \not \equiv 1 \bmod \ell^{2}$. Then the Iwasawa invariants $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish, where k is the number field constructed above.

Now let p be a prime number and k be a totally real number field and K be a real cyclic extension of degree p over k, which satisfies K $\cap k_{\infty}=k$. Let $S_{K_{\infty} / k_{\infty}}=\left\{w\right.$: prime ideal of $K_{\infty} \mid w$ is prime to p and ramified in $\left.K_{\infty} / k_{\infty}\right\}$.

In [1], Iwasawa proved a "plus-version" of Kida's formula. In [2], the following theorem is obtained by using the above Iwasawa's formula.

Theorem 3. Let p be a prime number, $k a$

[^0]totally real number field of finite degree and $K a$ real cyclic extension of degree p over k. Assume that k_{∞} has only one prime ideal lying over p and that the class number of k is not divisible by p. Then, the following are equivalent:
(1) $\lambda_{p}(K)=0$.
(2) For any prime ideal w of K_{∞} which is prime to p and ramified in K_{∞} / k_{∞}, the order of ideal class of w is prime to p.

In this paper, we apply Theorem 3 to prove Theorem 1 and Theorem 2. We state another ingredient needed here. Let K be a cyclic extension of a number field F. Let $G=\operatorname{Gal}(K / F)$. For each valuation v of F we let $e(v)$ be the ramification index of v in K / F. We put $e(K / F)=\Pi_{v} e(v)$. We let E_{K} denote the group of units, C_{K} the group of ideal classes, C_{K}^{G} the set of ambiguous ideal class groups, and $C_{K}^{\prime}{ }_{K}^{\prime}$ the set of ideal class groups containing ambiguous ideal of K, respectively. We will use the following "genus formula":

Theorem 4. Let K / F be a cyclic extension with Galois group G. Then

$$
\begin{align*}
& \left|C_{K}^{G}\right|=\frac{h(F) e(K / F)}{[K: F]\left(E_{F}: N_{K / F} K^{*} \cap E_{F}\right)} . \tag{1}\\
& C_{K}^{\prime G} \left\lvert\,=\frac{h(F) e(K / F)}{[K: F]\left(E_{F}: N_{K / F} E_{K}\right)} .\right.
\end{align*}
$$

Proof. See [3, p. 307].
2. Proof of theorems. Before proving Theorem 1, we need the following

Lemma 1. Let D be a square free positive integer such that there exists a prime number $q \mid D$ such that $q \equiv-1$ mod 8 . Let $k=\boldsymbol{Q}(\sqrt{D})$. Then there is no element α in the first layer k_{1} in the cyclotomic \boldsymbol{Z}_{2}-extension of k such that

$$
N_{k_{1} / Q_{1}}(\alpha)=-1
$$

Proof. First note that $\left(\frac{-1}{q}\right)=-1$ and $\left(\frac{2}{q}\right)$ $=1$. Suppose that there is an α in k_{1} such that ${ }^{q}$

$$
\begin{equation*}
N_{k_{1} / Q_{1}}(\alpha)=-1 . \tag{2}
\end{equation*}
$$

Write $\alpha=x+y \sqrt{2}+z \sqrt{D}+w \sqrt{2 D}$, where x, y, z and w are in \boldsymbol{Q}.

Then by (2) we have

$$
(x+y \sqrt{2})^{2}-D(z+w \sqrt{2})^{2}=-1
$$

Clearing the denominators of (3), we have
(4) $a^{2}+2 b^{2}+m^{2}=D\left(c^{2}+2 d^{2}\right), a b=D c d$ for some integers a, b, c, d and m. If q divides m, we see that q divides a and b since q divides m. Since D is square free, we see that q divides c and d. Hence we may assume that q is relatively prime to m. Reducing both sides of (4) by mod q, we have
(5) $a^{2}+2 b^{2}+m^{2} \equiv 0, a b \equiv 0 \bmod q$.

If $a \equiv 0 \bmod q$, then we have $m^{2}+2 b^{2} \equiv$ $0 \bmod q$. This is a contradiction since -2 is not a square $\bmod q$. If $b \equiv 0 \bmod q$, then we have a^{2} $+m^{2} \equiv 0 \bmod q$. This is also a contradiction since -1 is not a square $\bmod q$. This completes the proof.

Lemma 2. Let D be a square free positive integer such that there exist a prime number $p \mid D$ such that $p \equiv 3 \bmod 8$. Let $k=\boldsymbol{Q}(\sqrt{D})$. Then there is no α in k_{1} such that

$$
N_{k_{1} / \mathrm{Q}_{1}}(\alpha)= \pm(\sqrt{2}-1)
$$

Proof. We omit the proof since the proof is similar to Lemma 1.

Proof of Theorem 1. First we prove the first part of Theorem 1. By assumptions on p and q, we have

$$
\begin{equation*}
S_{k_{\infty} / Q_{\infty}}=\left\{\mathfrak{p}, \mathfrak{q}_{1}, \mathfrak{q}_{2}\right\} \tag{6}
\end{equation*}
$$

where \mathfrak{p} is the prime ideal of k_{1} lying over p and $\mathfrak{q}_{1}, \mathfrak{q}_{2}$ are prime ideals of k_{1} lying over q. Note that $E_{\mathrm{Q}_{1}}=< \pm 1>(\sqrt{2}-1)^{Z}$. Hence $e\left(k_{1} / \boldsymbol{Q}_{1}\right)$ $=8$ and $\left[E_{\mathrm{Q}_{1}}: N_{k_{1} / \mathrm{Q}_{1}} k_{1}^{*} \cap E_{\mathrm{Q}_{1}}\right]=4$ by Lemma 1 and 2. This completes the proof of the first part by Theorem 3 and Theorem 4.

Now let $k=\boldsymbol{Q}(\sqrt{p q r})$, where p, q and r are prime numbers such that $p, q \equiv 3 \bmod 8, p, q \not \equiv$ $3 \bmod 16 . r \equiv 1 \bmod 4, r \not \equiv 1 \bmod 8$. By these assumptions on p, q and r, we have

$$
S_{k_{\infty} / Q_{\infty}}=\{p, \mathfrak{q}, \mathfrak{r}\}
$$

Our conclusion follows immediately from Lemma 2, Theorem 3 and Theorem 4.

Remark 1. Actually the prime ideals $\mathfrak{p}, \mathfrak{q}_{1}, \mathfrak{q}_{2}$
of k_{1} are principal. Let p and q be prime numbers such that $p, q \equiv 3 \bmod 8, p, q \not \equiv 3 \bmod 16$. Then we can prove similarly that the Iwasawa invariants $\lambda_{2}(\boldsymbol{Q}(\sqrt{p}))$ and $\lambda_{2}(\boldsymbol{Q}[\sqrt{p q}))$ are zero, [5] contains another proof of this. It can be shown that there always exists an α in k_{1} such that $N_{k_{1} / Q_{1}}(\alpha)=-1$.

Example 1. Let $k=\boldsymbol{Q}[\sqrt{5 * 11 * 43})$, or $\boldsymbol{Q}(\sqrt{37 * 11 * 43})$. By using number theoretic packages "KASH", we can see that there is no unit α in k_{1} such that $N_{k_{1} / Q_{1}}(\alpha)=-1$. Hence $\lambda_{2}(k)=0$.

Example 2. Let $k=\boldsymbol{Q}(\sqrt{37 * 59 * 43})$. Again, by using KASH, we see that there is a unit α in k_{1} such that $N_{k_{1} / Q_{1}}(\alpha)=-1$. In this case, we can not decide whether $\lambda_{2}(k)$ is zero or not. Note that the class numbers of k and k_{1} are 2 and 8 , respectively.

Proof of Theorem 2. Note that $S_{k_{\infty} / Q_{\infty}}=$ $\{\mathfrak{p}\}$. Let ℓ_{1} and \mathfrak{p}_{1} be prime ideals of k_{1} above ℓ and p, respectively. We see that ℓ_{1} is unramified in the extension $k_{1} / \boldsymbol{Q}_{1}$ since k_{1} / k is unramified everywhere. Hence \mathfrak{p}_{1} is principal in k_{1} by the genus formula. This completes the proof of Theorem 2.

References

[1] K. Iwasawa: Riemann-Hurwitz formula and p-adic Galois representation for number fields. Tôhoku Math. J., 33, 263-288 (1981).
[2] T. Fukuda, K. Komatsu, M. Ozaki, and H. Taya: On Iwasawa λ_{p}-invariants of relative real cyclic extensions of degree p, Tokyo J. Math., 20, 489-494 (1997).
[3] S. Lang: Cyclotomic Fields I and II. Graduate Texts in Mathematics, Springer-Verlag, New York (1990).
[4] S. Lang: Algebraic Number Theory. Graduate Texts in Mathematics, Springer-Verlag, New York (1986).
[5] M. Ozaki and H. Taya: On the Iwasawa λ_{2}-invariants of certain families of real quadratic fields. Manuscripta Math., 94, 437-444 (1997).

[^0]: *) Supported by KIAS. I would like to thank Prof. K. Komatsu for reading this paper and giving many valuable comments.

