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1. Intreduction. In [2; Theorem 3. 1], cer-
tain linear operators on spaces of Jacobi forms
were introduced for cusp forms of one variable.
These operators are represented as adjoint oper-
ators to “product operators” with respect to the
Petersson inner product. The purpose of the pre-
sent paper is to extend this result to the case of
general “Jacobi cusp forms” in place of cusp
forms of one variable (see Theorem 3.1 below).
This extension is obtained in the same way as in
[2], but the L-series which appear in our
Theorem are of a different type from those in the
theorem in [2].

2. Jacobi forms and Petersson inner product.
For the theory of Jacobi forms we refer to [3].
We write It = SL, (Z) for the full modular
group and § for the upper half-plane. The ele-
ments 7 = (<ccz S), (4, 1)) of the Jacobi group
Il = I, x Z* operates on § X C in the usual
way by

at+b z+ At+pu
ro (z,2) =<cr+d’ ctc+d >
and for given positive integers k£ and m on func-
tions ¢: H X C— C by
limr = (et +d)7™

clz+ At + p)t _

T d Xt —222)

X exp(— 2mim(

X ¢(r o (z, 2)).
Let J,,, be the space of Jacobi forms of
weight k£ and index m, i.e. the space of holomor-
phic functions ¢: $ X C— C satisfying ¢ |7
= ¢ for all y € Fl] and let the Fourier expansion
of ¢ be
#(z, z) = b

cusp nreZ,ri<dmn
We write J,,, for the subspace of cusp forms of

Jum which require ¢ (#,”) =0 unless 7
< 4mn. For ¢,, ¢, € J,,, such that ¢, X @, is
cuspidal, we define the Petersson inner product
by

<hub> = [, il 280 D0,

C( n, 7’) ezm(nr+rz).

where t=wu+i,z=x+ 4y and dV,=v""

dudvdxdy is an invariant measure under the ac-
tion of Flj on § X C. The space (Jpm » <, >) is
a finite dimensional Hilbert space. The following
lemma will be used later.

Lemma 2.1. Let ¢ be a function in J,,, with
Fourier coefficients ¢ (m, ) and put the discrimi-
nant D: = " — dmn. Then ¢ (n, 7) depend only
onm D and on the residue class of v wmodulo 2m.
Furthermore, if k > 3 and ¢ is a cusp form, then

c(n, r) <|D|"*V*(D < 0).

Remark 2.1. If we have only the condition k

> 3, then

c(n, r) <|DI***(D<0).

For a proof of the first statement, see [3, pp.
22-23)], and for the second statement (the esti-
mates of Fourier coefficients), see [1, pp 308].
Hereafter we shall write simply ¢,(D’") for ¢(n, 7)
where D’ =|D|=4mn — v’ and u = r (mod
2m).

3. Construction of Jacobi forms.
remind the definition of the Jacobi
series.

Definition 3.1.
we denote by

Pk.m;n,r(T’ 2) = Z

rel"l,m\l",l
the (n, 7)-th Jacobi Poincaré series of weight k and

index m. (Note that the group
R~ ([} 9. 0.0l e

is a stabilizer of e iy ['1]. )
It is well-known that Py, (z, 2) € Ji, for
weight k£ > 2 (see [4]). This (infinite) series has
the following property, and it is expanded in a
neighborhood of cusp as follows.

Lemma 3.1. Let ¢(z, 2) € ], with ¢(z, 2)

= Zn,rez,ﬂ<4mn C(ﬂ, r)ezm'(nr+rz)' Then
< ¢(T’ Z)y Pk,m;n,,(f, Z) >
2
= (L™ (4mn -7 )
m" "k — 3/2)

k—3/2
21

First we
Poincaré

Forn, r € Z with v’ < 4mn

2ni(nt+7rz)
e |k, my

3/2—k
c(nm, 7)),

where

k.m
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We obtain the following lemma by using this
lemma:

Lemma 3.2.
(7, 2) is given by

Pk,m;n,r(f’ Z)

The Fourier expansion of Py ., .

_ + 27i(nyT+7,2)
= 2 Temmr M1y 7)€ AR
ny,r€Z,ri<amn,
o+ )
where £ 1 = (= 1%, 7 i, (01, 71) 15 Tiemin,r (11,

r,) symmetrized or anti- symmetrized with respect to
71 7. e., ‘rkm’n r( ny, 71) Tkmnr( ny, 7’1) ==
Tk,m;n,r(nlr - 71)’ and

Yerimy B, 1) = 0,,(n, 7 ny, 7)) + ik\/—nm"l
(D1/D)k/2 X 2H,, (n, 750, 1) iy, (

X /D D) cz1

2 2
where D, = r; — 4mn,, D = r" — 4mn,

1if D, = D, r, = r(mod2m)

0 otherwise,

0,(n, r;n,r) = [

H, (n,7;n,r) = PAMAEED YD S
A(modc) e;rrz:;icl)
exp (27”,( mA*+ A+ mo ' + np + 72 ))
c

Ty
x exp(2mi ( 2mlc )),

and J,_s,, is the Bessel function of order k — 3/2.
Proofs of these lemmas are given in [4: pp
519-522]. From this lemma we can easily deduce
Lemma 2.1 in the case of Jacobi-Poincaré series.
Now we shall construct Jacobi cusp forms by ap-
plying above Lemmas 2.1 and 3.1.

Theorem 3.1. Suppose that ki, k, € N such
that k, > 4, k, > 3, and m,, m, € N. Let

i )
¢1(T, Z) — Z a(nl, 7'1) eZm nTHY 2
ny,7€Z
4(my+myny—rf>0
cusp
€ jk1+k2 my+my?
and
2milngr+7,2)
Bulr,2) = T b, )™ € I
No,¥ o€
4m22nzz-r§>0
Then
2mitnr+rz)
0, (p)(c, ) = X cln, Ne™
nrez
4myn—r?>0
is a Jacobt cusp form of weight k, and index m,, where
c(n,r) =

Umgm — 7 (my + my) ", + Ky, — 3/2)
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Tmy Ik, — 3/2)

X 2 Z
ng=1 7,€Z
dmyn,>r?,

4(my(n+ny) +man)=r(r+27,) 20
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aln + ny, 7+ 1) b(ny, 7,)
AGm, + m) (n+ n) — (r + r)hHih>

Remark 3.1. The inner sum of the series is a
finite sum. Therefore the series converges if k; > 4,
k, > 3 as shown in the following way. From Lemma
2.1 the series is easily seen to be equal to

a, (D)

XX X X £

w(mod2my) 1’ (mod2(my+my)) Ds1 Dkﬂ'kz_S/2
D=—4*(mod4(m+my,))

my(D — 4(m, + m,)n) + myr(r +2r,)
my + m,

2
—m )

X ;bu(

where 7, runs over Z such that v, = p(mod 2m,),
= w — r(mod 2(m; + m,)), and

2
ﬂ1(7—\/1'72-%&@-*-1’2—4(m +m)n)>
ml mZ 1 2:

<72<L”3<r+\/72+ﬂ(D+ r* — 4(m, + m,)n) )

Therefore we find that it converges if ky + k, >
k, +4 >4, ie, k;, > 4 by virture of Lemma 2.1.

Remark 3.2. In case m, = 0, we assume that
ki >5 and ¢,(t,2) = 2, >, b(n,)e 2ET Then
this theorem is the same as the one given in [2:
Theorem 3.1].

Remark 3.3. If ¢,(z,2) =P, ,,c(n, 7)
mvolves special value of certain Dirvichlet series
which involves Kloosterman-type sums H, . (n,
r;n, r) and Fourier coefficients of ¢, (z, 2)
by Lemma 3.2.

Proof. Let us define —dmmag?

F(z, 2) = ¢,(z, Dd,(z, Dv'%e *
where 7T=u+ w,z=x + iy. We can easily
check that F (7, z) satisfies the transformation
law of Jacobi forms, and has a reasonable speed
of growth in § X C, so that the integral

(¢, F) = »[‘jl\b

is well defined as it converges for every ¢ €
]Cu p. Since the map on ],f:'f,fl: ¢— (p, F) is
lmear, there exists a unique function f(z, 2) =

S cln, DT € IO atistying < g,

nrez
amn—r{>0

f>= (¢4, F) for all ¢ in ,flu,s,fl by Riesz’s
theorem. (The above linear operator which maps
F to fis a holomorphic projection of F.) Take the
Poincaré series P, ,,.,, (7, 2) € ]cusp for any
cusp form ¢ such that < ¢,f> (¢, F).
Then, from the definition of two inner products

2@ 2F(z, 2v"e ™" qy,
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and the Lemma 3.1 we get

(dmgn — )5
cn, 7)) = @ <f(z, 2, Py pins (T, 2) >
4 — Yyl
=t =TT Rty 2, Py (2, D).
kymy

By the Lebesgue dominated convergence
theorem, we can interchange the sum and integral
in (F, Py ;n,), so that

(F(z, 2), Py yyins(7, 2))

=ﬁ F(r 2Py pins (T, D" '4’""‘”2/”dV,
Fl\-ﬁx v

(3.1) -
2mil ) ky -4 2/
= Z\ rl\ngCF(T )e i m+rz[khm1,ﬂ) 1p Ty vdvj
(3.2) el r
— F(T ) 2mi(nt+rz) kle—«tnmly /udV
(3 3) Flm\ HxC
where in the last line we have used the

usual Rankin unfolding method. Substituting the
Fourier expansions of ¢, and ¢, in the definition
of F, we find the n,-th coeff1c1ents B(F ; ny; v;
2) of F in the variable e , is given by

BF ;ny;v; 2 =
(= z

y,1,€2 nez
amny > vl dlmytmy) (ngtny) > rf

T\ -l 8
alny+ my, 1) b(n,, r,)e 0"

=4,
=2n(ry+ry)y 2mi(r~r)z k —J—
X ¢ 1172 PN Uze

'
ifn,20
) =21 Q2ny-ng)v

alny, 1)b(n, — n, 1,)e

Hyy 1y

ny1EZ nez
L amyng=ng) > 1k dmptmn>r}

47rm
=2n(rtrdy 2milry=rpz k
X ¢ 1 zﬂe 1= k2

V
v’ if m, <0.
Putting them into (3.3) and interchanging the sum
and integral, we have
( ) Z B(F : no; v; z)eZni(no—n)u

ng€ZVr, f\bxc
—4mmyy?

X e—Zn(nvwwe—mevkl—se 7 dudvdxdy.
(3.4)

We also observe that a fundamental domain for
the action of I, on $ X C is ([0, 11) x ([0,

©]) X ([0,11) X R. And we know that J,

2mi(a—bu
e d

u = 0,, where 0,, is Kronecker’s delta.
So, as # = 1, we obtain
B4= 2 z

Ny ty€Z nezZ
amamy> rf amy+my) (niny > ok

a(n + ny, 7)b(n,, 1)
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® ! ® 47 (ny+n) 2T (ry+7y47)
=4 My+n)v =27 (r1+7y+7)Y
Xfffe 2 ¢ o
0 0 —00

- 2
il =rg=1)T_ kythyp=3 —EILEMIY

X e v e v dvdxdy.
=2 X aln+ ny, v+ r)b(n,, 1,
ny=1 ny1y€l
dmony>rE

4(my(n+ny) +mon) =7 (r+21,) 20 -
—4n(ny+n)v ky+ky=3
X f e 2 T
0

00 2
« f e-4n((rz+r>y+‘ﬁl+—;”2’i) dyd,
(3.5

Since we have

) 2
f e-4z(<rz+r)y+l”—1+7”’2)—”—>
-00

dy

T(r+r)%  £° —drimi+my) PG OURY
= g mitm, e v 2(my+my) dy
—00
T (r+r)%v
\/;e my+my

T 2/my + my’

using the well-known Euler’s expression of Gam-
ma function I'(2) as an integral, we get

(m, + m) "Ik, + k, — 3/2)

(3.5) = g phthim3/2
X z
ny>1 1,€Z
dmyny>rE

4(my (n+ng) +myn) 7 (r+27,) 20
aln + ny, v+ 1,)b(ny, 1,)
PR
@0m, + m)(m + n) — (r + r)HH"

Finally, we can prove the Theorem by taking f
fOr @¢2(¢1).
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