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1. Introduction. In [2; Theorem 3. 1], cer-
tain linear operators on spaces of Jacobi forms
were introduced for cusp forms of one variable.
These operators are represented as adjoint oper-
ators to "product operators" with respect to the
Petersson inner product. The purpose of the pre-
sent paper is to extend this result to the case of
general "Jacobi cusp forms" in place of cusp
forms of one variable (see Theorem 3.1 below).
This extension is obtained in the same way as in
[2], but the L-series which appear in our
Theorem are of a different type from those in the
theorem in [2].

2. Jacobi forms and Petersson inner product.
For the theory of Jacobi forms we refer to [3].
We write F SL Z) for the full modular
group and Yfi for the upper half-plane. The ele-

ments T= ((a b)c d
(2,/2)) of the Jacobi group

F[--FIIx Z operates on Y) C in the usual
way by

To (v z) ( av+b z++[)cv + d’ c + d
and for given positive integers k and m on func-
tions : (C) C--* C by

I,mr (cz + d)-*

exp(- 2rim(
c(z + r + #)2
c+d -2z))

x (r o (r, z)).
Let Jk,m be the space of Jacobi forms of

weight k and index m, i.e. the space of holomor-
phic functions Y C-- C satisfying elk,roT

for all y /’] and let the Fourier expansion
of be

2r (nv+ rz(z-, z) c( n, r)e
n,rZ,r2 4mn

We write j,u,p for the subspace of cusp forms of
Jk,m, which require c (n, r) 0 unless r
< 4mn. For , 2 Jk,m such that q x qe is
cuspidal, we define the Petersson inner product
by

-4ffmy/v.v.< 1, > 1(r z)(z z)v e aU,
\#xC

-3
where r= u + iv, z--x+ iy and dVI= v
dudvdxdy is an invariant measure under the ac-

rcusp
tion of F[ on Y) X C. The space (dk,m <, >) is

a finite dimensional Hilbert space. The following

lemma will be used later.
Lemma 2.1. Let be a function in Jk,m with

Fourier coefficients c (n, r) and put the discrimi-

nant D" re- 4ran. Then c n, r) depend only
on D and on the residue class of r modulo 2m.
Furthermore, if k > 3 and is a cusp form, then

c(n, r) << IDI/-/(D< 0).
Remark 2.1. If we have only the condition k

> 3, then
c(n, r) << D Ik-a/e(O < 0).

For a proof of the first statement, see [3, pp.
22-23], and for the second statement (the esti-
mates of Fourier coefficients), see [1, pp 308].
Hereafter we shall write simply c(D’) for c(n, r)
where D’ D] 4mn- r and 12 =-- r (mod
2m).

3. Construetion of Jaeobi forms. First we
remind the definition of the Jacobi Poincar
series.

Definition 3.1. For n, r Z with r < 4mn
we denote by

2rc (nv+Pk,m;n,r(’, Z) e Ik, mr
the (n, r)-th Jacobi Poincar series of weight k and
index m. (Note that the group

’ 0 1’
2=i(nz+rz)s a staalzer of e F.

It is well-known that P,;n,r (z, z)J for
weight k > 2 (see [4]). This (infinite) series has
the following property, and it is expanded in a
neighborhood of cusp as follows.

Lemma 3.1. Let (, z) # (, z)

.,rz,r’<4. c( n, r) e=<"+r>. Ten

< (z, z), P,m;n,r(Z, z) >
a,m(4mn- r)n-*c(n, r),

where mk-eF(k- 3/2)
O[" k,m k-3/2

2c
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We obtain the following lemma by using this

Lemma 3.2.
(v z) is given by

Pk,m;n,r(V, Z)

The Fourier expansion of Pk,m;n,r

+ (n r) e2ri(nlr+rlz)’k,m;n,r
nl,rleZ,r<4mnx

where + 1 (-- 1)
ri) symmetrized or anti-symmetrized with respect to
r, i. e., 7k,m;n,r( ni, ri) ’k,m;n,r( n, r) +
’k,m;n,r( nl, ’1), and

rk,m;n,r (n, r) 6m (n, r n, rl) + iv/-rm-( D,/D )/2-3/4 Hm,c (n, r; n, r )]-3/. (---[
/D1D) c1

where D1 rl 4mn, D r 4mn,

1 if D1 D, rl =- r(mod2m)
0m (n, r n, rl)

0 otherwise,

-3/2Hm,c(n, r; rt1, r1) c Y] Y]
(modc) p (modc)

(p,c)=l

( )x exp(2ri 2mc )’

and ]-3/2 is the Bessel function of order k 3/2.
Proofs of these lemmas are given in [4’ pp

519-522]. From this lemma we can easily deduce
Lemma 2.1 in the case of Jacobi-Poincar series.

Now we shall construct Jacobi cusp forms by ap-
plying above Lemmas 2.1 and 3.1.

Theorem 3.1. Suppose that k, k. N such
that k 4, k2 3, and m, m. N. Let

2i(nir+riz)(v, z) Z a(n, ri)e
r$1,rl Z

4(ml+m2)nl-r>O

jr CUSp
j kl+k2,ml+m2

and
/.cusp(v, z) E b(n, r)e(n*+rz) e
dkz,m2.

t2,r2Z
4mn-r>O

Then
2ri(nr+rz)() (r, z) c(n, r)e

,rZ

4mn-r>O
is a Jacobi cusp form of weight k and index mv where

c(n, r)
(4mn- r)-V(m + m)+-F(k + k- 3/2)

c**m-ZY(k 3/2)

Z
r.eZ

4mn.>r2
(mx (n+n2) +m2n) -r(r+2r2) 0

a(n + n, r + r)b(n, r)
(4(m + m) (n + n) (r + r))+-/"

Remark 3.1. The inner sum of the series is a

finite sum. Therefore the series converges if kl > 4,
k > 3 as shown in the following way. From Lemma
2.1 the series is easily seen to be equal to

X X X aa,(D)
/2(mod2m2) /2 (mod2(ml+m2) D> D kl+kz-3/2

D -/2’2(mod4(m+mz))

b[ m2(D- 4(m + m)n)+m2r(r+ 2r)- mlr
r2 m + mz

where r2 runs over Z such that r2 =- I2 (mod 2m2),
r p’-- r(mod 2(ml + m2)), and

m2 ( r- r + m (D + r 4(ml + m2)n) )ml

m2(r /r+-(D+r )< r <
\
+ 4(m + m)n)

Therefore we find that it converges if k + k. >
k2 + 4 > 4, i.e., k > 4 by virture of Lemma 2.1.

Remark 3.2. In case m O, we assume that

k > 5 and 2 (v, z) n>l b (n)e. Then
this theorem is the same as the one given in [2:
Theorem 3.1].

Remark 3.3. If 2(v, z) Pk,m, c n, r)
involves special value of certain Dirichlet series

which involves Kloosterman-type sums Hm, (n,
r nl, r) and Fourier coefficients of x (v, z)
by Lemma 3.2.

Proof Let us define
_47gmzy

F(v, z) 1 (’, z) 2(T, z) p 2e
where v= u+ iv, z x + iy. We can easily
check that F (v, z)satisfies the transformation
law of Jacobi forms, and has a reasonable speed
of growth in S3 C, so that the integral

4gmly2/vtV(, F) \c(r, z)F(v, z)ve

is well defined as it converges for every
jr cusp

,m" Since the map on ,m - (, F) is

linear, there exists a unique function f(v, z)
2ci(nv+rz) jrcuspc (n, r) e 1,m satisfying < ,

n,reZ

4mn-r>O
jrcuspf> (, F)for all in ,m by Riesz’s

theorem. (The above linear operator which maps
F to f is a holomorphic projection of F.) Take the

jr cuspPoincar series Pkl,mi;n,r (T, Z J kl,ml for any
cusp form such that < C, f> (, F).
Then, from the definition of two inner products
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and the Lemma 3.1 we get

(4mn r
c(n, r)

l,ml

(4. r)-z

ak
(F(v, Z) Pkx,m,;nr(T, Z)).

1,1

By the Lebesgue dominated convergence
theorem, we can interchange the sum and integral
in (F, Pk,m;,,r), SO that

(F(v, z), Ph,,;n,r(V,, z))

(3.1)
k,c

f -4RlY2/Vv

(3.2)
2i(nr+rz) -4mlY/v.vr

(3.3)
where in the last line we have used the

usual Rankin unfolding method. Substituting the
Fourier expansions of and 2 in the definition
of F, we find the no-th coefficients fl(F; no; v;

2ffiz) of F in the variable e s given by
fl(F;no;V;Z)

nvreZ
4mznz>

e_e<r,+,)Ve2<_r,)v**e: m if n 0

a(n, r)b(n-no, 5)e-n*-n>
nvr2Z fi Z

4m2(n2-no) >r 4(mi+mz)no>

e-r+r>Ve2m->ve-’’7v* if no O.
Putting them into (3.3) and interchanging the sum
and integral, we have

Z) e2in-n>u(3.3)= (F.n0,, v;

X e e v" e ddvdxdy.
(.4)
We also observe that a fundamental domain for
the action of , on x C is ([0, 1]) x ([0,
]) ([0, 1]) R. And we know that f o
e a, where , is Kronecker’s delta.
So, as n 1, we obtain

(3.4) a(n + n2, r)b(n2, r2)
n2,r2Z rlZ

4m2n

fo fo f__( -4r%+n)Ve-2r(r+r+r)ve

X e2ri(rl-r-r)xvkl+k-3e
-4zc(ml+m)v2

dvdxdy.

=E E
n2> n2,r2eZ

4m2n2>r
4(m (n+n2) +m2n) -r(r+2r)0

a(n + n, r + rz)b(n2, r)

X fo’e-4r(n+n)VVk+k-3
X el-4r((r+r)y+(m+vm)Y2) dydv.

(3.5)
Since we have

f_:-4zc((r2+r’y+(ml+vm)Y2’dye
zc(r+r)2v 3_oore-4r( +m2) (r+r)v

e ml+m2 1 (y+ 2(ml+m2))2 dy

r(r+rz)2ve ml+m2

2im + m’
using the well-known Euler’s expression of Gam-
ma function/(z) as an integral, we get

(ml + m2)h+*-2F(kl + k2- 3/2)
(3.5)

X
4m2n r

4(ml (n+n2) +m2n) -r(r+2r2) 0

a(n + n, r + r) b(n, r)
(4(m + m)(n + n) (r + r)2)

Finally, we can prove the Theorem by taking f
for #(1).
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