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This is a continuation of my preceding paper
[2] which will be referred to as (I) in this paper.
In (I), to each quadratic space (V, ¢) over any
field k of characteristic # 2 and a pair w =
(u, v) of independent and nonisotropic vectors in
V, we associated an elliptic curve E,, over k:
(01) E,:Y'=X*+A,X"+BX "

A,, B, € k.

In this paper, we shall consider the converse
problem. Thus, let E be an elliptic curve over k:
(0.2) E:Y*=X’+ AX® + BX,

A, B€ k, B(A’ — 4B) # 0.
We shall show that there is a quadratic space
(V, @) over k and a pair w = (u, v) as above so
that
(0.3) E = E,. Main Theorem).
(In fact, we can choose V= k° and q(z) = 2% +
xi — x2). Since E, is provided with a point P,
= (xw, yw),z) so is E, i.e., we can write down a
point on E (k) explicitly. When k is a number
field, we can find easily a point of infinite order
in E(k) under simple conditions on A4,B. On the
other hand, statement like (0.3) may be viewed as
an analogue (over any field k of characteristic
# 2) of “Uniformization theorem of elliptic
curves over C”.

§1. TField of characteristic # 2. Let (V, ¢)
be a quadratic space over a field of characteristic
# 2. Consider a subset Wof V X V given by
(1.1) W= A{(u,v) € VXV,u,vare

independent and nonisotropic}.
To each w € W, we associate an elliptic curve
E .

(1.2) E,:Y’=X+A,X*+ B,X

1) In this paper we shall write 4,, B, instead of
P,, Q, in ( I ).We shalll also use <%, v for inner pro-
duct instead of B(u, v).

2) We wrote Py = (x,, y,) in (]) for P, = (z,, ¥,).

3) By abuse of notation we shall identify H with
the hyperbolic plane k” with the metric form gy (h) = h;
— hi, b= (hy hy) € K

4) Since gy is isotropic, it can represent any ele-
ment of k.

with
(1.3) A,= <, 0> =5 (qlu+ v) — qlu) — q)),

B, = (Ku, v — q(u)q())/4.
Conversely, let E be an elliptic curve over k
of the form:

(1.4) E:Y’=X*+ AX’+ BX
A, B€ k, B(A®*—4B) # 0.
(1.5) Main theorem. Let k be a field, ch(k) #

2, and q be a ternary quadratic form on the vector
space V.= k° given by q(x) = 2’ + 2} — xl, x =
(), x,, ;). Let e = (1,0,0) and H = {h = (0,
hy, hy) ; hy, by € kY2 For any elliptic curve E of
the form (1.4), let h be a wvector in H such that
gyu(h) = — 4B.Y Then the pair w = (e, Ae + h)
belongs to W in (1.1) and we have E = E,, ((1.2),
(1.3)).

Proof. Put w = (u, v) with u = e, v = Ae
+ h, where & € H is a vector such that g, (h) =
— 4B. Since (V, q) = ke® (H, qy), an ortho-
gonal direct sum with g(e) = 1, we have A, =
{u, v> = <e, Ae+h> =A and B, = (Ku, v»*

— qwq)/4 = (A* — q(e)q(Ae + h))/4 =

(A* — (A’ — 4B))/4 = B. Since A, B are coeffi-
cients of E, we have 0 # B(A® — 4B) = B,(4,°
— 4B,) and hence w = (u, v) € W. QED.
(1.6) Corollary. Let E be an elliptic curve of the
form (1.4) over k. Then E(k) contains a point P =
(x, y) with .
x=(A—1)°—4B)/4,y=x2(A"— 4B —1)/4.

Proof. Using notation in the proof of (1.5),
we find gle —v) = qe) + q(v) — 2<e, v» =1
+ A* — 4B —2A and q(v) — q(e) = A* — 4B
— 1. Our assertion follows from (1.5) and (1.7)
of (I). Q.ED.

§2. Number fields. Let £ be a number
field of finite degree over @ and o be the ring of
integers of k. For a prime ideal p of 0, we denote
by v, the order function on k at p. An element
a € o is said to be even if v,(@) > 0 for some p
which lies above 2. The next theorem provides
us with a family of elliptic curves over k such
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that rank E (k) is positive for each mémber E of
it.

(2.1) Theorem. Let E:Y*= X+ AX*+ BX
be an elliptic curve such that A, B belong to 0. If (i)
A is even and (ii) there is an integer C € 0 such
that (A— 1)> — 4B = C?, then P,= (z,, ¥,),
with x,= (C/2)*,y,= (C/2)(C*+ 2(4A— 1))/4,
is a point of infinite order in E (k).

Proof. First of all, P, belongs to E(k) by
(i1) and (1.6). Next, assume, on the contrary, that
P, is of order m = 2. If m = 2, then P, is a
2-torsion point; so y, = 0. By (i), let p be a
prime over 2 such that v,(A) > 0. Then, by (ii),
we have vp(C) = 0; in particular, C # 0. Hence
the relation 0 = y, = (C/2)(C* + 2(A — 1))/4
implies that C* = 2(4 — 1), contradicting v, (O)
= (0. Thus we may assume that m > 2. From
this point on, we need a generalization of the
Nagell-Lutz theorem ([3] p. 220, Theorem 7.1).%
This theorem, when applied to our P, = (x,, %),
says:

(a) If m is not a prime power, then x,, Y, € 0.

() If m=1" is a prime power, for each prime
ideal q of O let

7, = [vq(l)/(ln —1I"N1 (I 1= the integral part).
Then v (x,) = — 27, and v,(y,) = — 37,. In par-
ticular, x, and y, are q-integral if v,(1) = 0.

Now, as we saw v, (C) = 0 for a p above 2,
we have v,(x) = — 2v,(2) < 0; hence x, €,
showing that the case (a) does not occur. Next,
for the case (b), assume first that / # 2. Then for
that prime p over 2 we have up(l) = 0 and so,
by the last italicized sentence in (b), O
<y, (r) = —2y,(2) <0, and the case [ # 2
does not occur also. Finally, it remains the case
m = 2", n > 2. Again for that p, put e = v,(2).
If we write e = 52" 4+ 7, with 0 < » < 2" we
have 7, = s Hence (b) implies that — 2s

< v, () = 2p,(0) — 2v,(2) = — 2y,(2) =
—2¢;s0 s> e=>52""" which is
because n = 2. Q.E.D.

§3. Algebraically closed fields. Assume
that our basic field k is algebraically closed of
characteristic # 2. Let g be the ternary quadra-
tic form on v = k° defined by q(x) = z” + x} —

impossible

5) This portion of the proof is the same as in the
proof of (2.3) in [1]. In view of the change of situation,
however, we find it convenient to repeat it.

6) Namely, take an s € GL(V) so that sau = u’,
sv = sv’. Then (3.9) implies s € 0(g).
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.2:32 We have defined a set Win V X V, (1.1).

Now call E the totality of elliptic curves E over

k of the form (1.4). Then, by (1.2), (1.3), we have

amap 7 : W— E given by

Bl)rw) =E,:Y’=X'+A,X*+ B,X.

We know that 7 is surjective by (1.5). On the

other hand, to describe fibres of m, it is conve-

nient to limit ourselves to the case where k is

algebraically closed. Denote by O(g) the ortho-

gonal group of g. We need also the following

group:

(3.2) Gl = k™ X 0(g).

This group G(g) acts on W by the rule:

(3.3) (a, )w = (asu, a”'sv),
ac€k’,s€0@,w= (u,v) €W.

One checks easily that

(3.4) n(gw) = n(w), g€ G(g.

Passing to the quotient, the map w:w— E in-

duces a map

(3.5) T W=G@\W—E

which is surjective.

(3.6) Theorem. The map 7 is a bijection: W =

G@\w=E.

Proof. We have only to check that 7 is in-
jective. So take two points w, w” € W such that
E,=E,, ie, A, = A, and B, = B,,. In other
words, consider w= (u, v), w = (', v) € W
such that
(3.7) {u, v> = <w/, v> and

Cu, v9° — qw)qw) = <, v — qw)q@),
or
(3.8) <u,v> =</, v and q(w)q(v) = qu)q@").
Since k is algebraically closed and q(#)g(v) # 0,
there is an @ € k™ so that glau) = q(«’) ; hence
q(av’) = q(v) by (3.8). Therefore, (3.8) amounts
to the condition:

(3.9) lau, v> = {u’, av’>, qlau) = q(u’) and

q(w) = q(av).

Our assertion then follows from (3.9), the inde-
pendence of #, v and the SAS-theorem on triang-
les in the metric space (V, ¢).9 Q.E.D.
(3.10) Corollary. Let k be an algebraically closed
field of characteristic + 2 and let E be an elliptic
curve Y = X*+ AX* + BX over k, B(A® — 4B)
# 0.. Then, for any a € k", the point P, = (z,,
Y,) belongs to E(k), where

{x,, = (@ + a”%(A* — 4B) — 24)/4,

Y, = x,,%(az — a %(A* — 4B)) /4.
Proof. We know that w = (e, Ae + h), with
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gy(h) = — 4B, is a point in W such that 7 (w)
= FE, ((1.5)). By (3.6), any other point w’ such
that #(w’) = E is of the form w’ = gw, with g
= (a, s) € G(¢). Our assertion follows if one
computes the coordinates x,, ¥, of the point P, in
E, = E by making use of the explicit formula in
(L.7) of (I). Q.E.D.
(3.11) Remark. Needless to say, one verifies
(3.10) derectly. Be that as it may, it is nice to
have found a (double valued) map a — P, = (x,,
y,) form k™ to E in (3.10), (end of remark).

Since k is algebraically closed, one should
classify E according to isomorphisms over k. If
E, E' € E are given by Weierstrass form of
type (1.4) with coefficients (4, B), (4’, B’), re-
spectively, then, as is well-known, we have
(3.12) E=ZE' &

u’A’ = A+ 37,
u'B’ = B + 2Ar + 37°,
0=r(B+Ar+ "), u(+0), r € k,
< j(E) = j(E),
where
(3.13) j(E) = 2°(A* — 3B)* /(B*(A> — 4B)).
In view of (3.6), we can view j as a function of
w= (u,v) € W:
(3.14) j(x(w)) = 2°(Ku, v)* + 3q(w) q())*?
/(q(w) q() Ku, v)° — qu) g())?).
In particular,
(3.15) j(w(w)) = 2°3° (u, v) =0 or

+ 3(q(u) g(0))?2.
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§4. Real number field. Taking V = R’
consider the standard quadratic form ¢(z) =
+ .z‘zz, z = (z, x,). Hence the metric space
(V, @ is the space of plane Euclidean geometry.
Here, the set W is nothing but the set of pairs
w = (u, v) of independent vectors; namely
triangles (a, b, ¢) such that a°= q(w), b> =
g() and ¢’ = qu—v) = qu) + q(v) — 2<u, v,
(the law of cosine). We have

A, = {u, v>=%(az+b2—cz)

B, = (Ku, v’ — qwq@)/4=
—s(s—a)(s—b(— o).
The elliptic curve E, is the one introduced in [1]
in connection with the antique congruent number
problem. Needless to say, if we pursue an analo-
gous theme for (V, ¢) with V= R® q(x) = z]
+ 2 + 22 (resp. q(@) = x! + x7 — z2), then we
will be led to triangles on the sphere q(x) = 1
(resp. on the upper half of the hyperboloid of two
sheets g(x) = —1). We hope to come back some-
time to the study of such a relationship between
non-Euclidean geometry and elliptic curves.

(4.1)
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