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This is a continuation of my preceding paper

[2] which will be referred to as (I) in this paper.
In (I), to each quadratic space (V, q)over any
field k of characteristic =/= 2 and a pair w-
(u, v) of independent and nonisotropic vectors in
V, we associated an elliptic curve Ew over k"
(0.1) E" Y= Xa + AX + BX. ,)

A,B k.
In this paper, we shall consider the converse

problem. Thus, let E be an elliptic curve over k"
(0.2) E" Y X + AX + BX,

A, B k, B(A- 4B) e 0.
We shall show that there is a quadratic space
(V, q) over k and a pair w- (u, v) as above so
that
(0.3) E- Ew. (Main Theorem).
(In fact, we can choose V k and q(x) x +

2x.- xa). Since E is provided with a point P
(x, y),2) so is E, i.e., we can write down a

point on E (k) explicitly. When k is a number
field, we can find easily a point of infinite order
in E(k) under simple conditions on A,B. On the
other hand, statement like (0.3) may be viewed as
an analogue (over any field k of characteristic
4: 2) of "Uniformization theorem of elliptic
curves over C".

1. Field of characteristic 4= 2. Let (V, q)
be a quadratic space over a field of characteristic
4: 2. Consider asubset Wof Vx Vgivenby
(1.1) W= {(u, v) V x V u, v are

independent and nonisotropic}.
To each w W, we associate an elliptic curve

Ew:
(1.2) E" Y X + AX + BX

1) In this paper we shall write Aw, Bw instead of

P, Q in I ).We shalll also use (u, v} for inner pro-

duct instead of B(u, v).
2) We wrote P0 (x0, Yo) in (I) for P (x, yw).
3) By abuse of notation we shall identify H with

the hyperbolic plane with the metric form qH(h) h
h, h (h2, h3) k.

4) Since qn is isotropic, it can represent any ele-
ment of k.

with
1

(1.3) A (u, v) - (q(u + v) q(u) q(v)),

B ((u, v)- q(u)q(v))/4.
Conversely, let E be an elliptic curve over k

of the form:
(1.4) E" y2 X + AX + BX

A, B k, B(A- 4B) 4= 0.
(1.5) Main theorem. Let k be a field, ch(k) =/=

2, and q be a ternary quadratic form on the vector
2space V-- k given by q(x) x + x x, x

(x1, x, xa). Let e= (1,0,0) and H= {h (0,
h, ha) h., h k}. 3) For any elliptic curve E of
the form (1.4), let h be a vector in H such that
qn(h) 4B. 4) Then the pair w (e, Ae + h)
belongs to W in (1.1) and we have E E,, ((1.2),
(1.3)).

Proof. Put w-- (u, v) with u-- e, v-Ae
+ h, where h H is a vector such that qH(h)

4B. Since (V, q) ke( (H, qn), an ortho-
gonal direct sum with q(e)= 1, we have A
(u, v} (e, Ae + h) =A and Bw- ((u, v}

q(u)q(v))/4 (A- q(e)q(Ae + h))/4
(A- (A 4B))/4 B. Since A, B are coeffi-
cients of E, we have 0 :/= B(A- 4B) B(A
4B) and hence w (u, v) W. Q.E.D.

(1.6) Corollary. Let E be an elliptic curve of the

form (1.4) over k. Then E(k) contains a point P
(x, y) with
x- ((A- 1)- 4B)/4, y- x-(A- 4B- 1)/4.

Proof Using notation in the proof of (1.5),
we find q(e- v) q(e) + q(v) 2(e, v) 1
+A-4B-2A and q(v) q(e) -A- 4B
--1. Our assertion follows from (1.5) and (1.7)
of (I). Q.E.D.

2. Number fields. Let k be a number
field of finite degree over Q and o be the ring of
integers of k. For a prime ideal p of o, we denote
by v, the order function on k at p. An element
a o is said to be even if (a) > 0 for some p
which lies above 2. The next theorem provides
us with a family of elliptic curves over k such
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that rank E(k) is positive for each member E of
it.
(2.1) Theorem. Let E" ye_ X . AXe BX
be an elliptic curve such that A, B belong to o. If (i)
A is even and (ii) there is an integer C o such
that (A- 1)2- 4B C2, then Po-- (Xo, Yo),
with xo (C/2) 2, Yo (C/2)(C -4- 2(A- 1))/4,
is a point of infinite order in E(k).

Proof First of all, Po belongs to E(k)by
(ii) and (1.6). Next, assume, on the contrary, that

Po is of order m > 2. If m 2, then Po is a
2-torsion point; so Yo 0. By (i), let p be a

prime over 2 such that v,(A) > 0. Then, by (ii),
we have p,(C) 0; in particular, C #= 0. Hence
the relation 0 Yo-- (C/2)(Ce -f- 2(A- 1))/4
implies that Ce= 2(A- 1), contradicting v,(C)

0. Thus we may assume that m > 2. From
this point on, we need a generalization of the
Nagell-Lutz theorem ([3] p. 220, Theorem 7.1). 5>

This theorem, when applied to our Po (Xo, Yo),
says:

(a) If m is not a prime power, then Xo, Yo .
(b) If m is a prime power, for each prime

ideal q of let

r [(l)/(1n- ln-)] ([ the integral part).
Then (xo) >-- 2r and (Yo) >- 3r. In par-
ticular, xo and Yo are q-integral if (1) O.

Now, as we saw v,(C) --0 for a p above 2,
we have ,(Xo) 2,(2) < 0" hence x0,
showing that the case (a) does not occur. Next,
for the case (b), assume first that l :/: 2. Then for
that prime p over 2 we have p,(1) --0 and so,
by the last italicized sentence in (b), 0
--< v,(Xo) --2,(2) 0, and the case l:/: 2
does not occur also. Finally, it remains the case

2"m n _> 2. Again for that p, put e ,(2).
If we write e s2n- - r, with 0 < r < 2n- we
have r- s. Hence (b) implies that 2s

<-- ,,(Xo) 2,,(C) 2,,(2) 2,,(2)
2n-12e" so s--> e--> s which is impossible

because n _> 2. Q.E.D.
[}3. Algebraically closed fields. Assume

that our basic field k is algebraically closed of
characteristic :/: 2. Let q be the ternary quadra-
tic form on v defined by q(x) x + x

5) This portion of the proof is the same as in the
proof of (2.3) in [1]. In view of the change of situation,

however, we find it convenient to repeat it.

6) Namely, take an s GL(V) so that sau- u’,
sv sv’. Then (3.9) implies s O(q).

x3. We have defined a set W in V V, (1.1).
Now call E the totality of elliptic curves E over

k of the form (1.4). Then, by (1.2), (1.3), we have
a map 7r" W--* E given by
(3.1)r(w) Ew" Y= X / AwX + BX.
We know that z is surjective by (1.5). On the
other hand, to describe fibres of z, it is conve-
nient to limit ourselves to the case where k is
algebraically closed. Denote by O(q)the ortho-
gonal group of q. We need also the following

group:
(3.2) G(q) k O(q).
This group G(q) acts on W by the rule:
(3.3) (a, s)w (asu, a-sv),

a k, s O(q), w= (u, v) W.
One checks easily that
(3.4) r(gw) r(w), g G(q).
Passing to the quotient, the map 7’w -- E in-
duces a map

(3.5) " = G(q)\ W- E
which is surjective.
(3.6) Theorem. The map is a bijection" Ir

G(q) \ w - E.
Proof We have only to check that is in-

jective. So take two points w, w’ W such that

E E,, i.e., Aw A, and B Bw,. In other
words, consider w (u, v), w’-- (u’, v’) W
such that

(3.7) (u, v) (u’, v’) and
(u, v)- q(u)q(v) (u’, v’)- q(u’)q(v’),

or

(3.8) (u, v) (u’, v’) and q(u)q(v) q(u’)q(v’).
Since k is algebraically closed and q(u)q(v) =/= O,
there is an a k so that q(au) q(u’) hence
q(av’) q(v) by (3.8). Therefore, (3.8) amounts
to the condition:
(3.9) (an, v) (u’, av’), q(au) q(u’) and

q(v) q(av’).
Our assertion then follows from (3.9), the inde-
pendence of u, v and the SAS-theorem on triang-

les in the metric space (V, q).6) Q.E.D.
(3.10) Corollary. Let k be an algebraically closed

field of characteristic =/= 2 and let E be an elliptic
y2curve X -AX + BX over k, B(A- 4B)

0.. Then, for any a k, the point Pa: (xa,
Ya) belongs to E (k), where

_2(A2
Xa (a -- a 4B) 2A)/4’,

--2y=x(a2-a (A2-4B))/4.
Proof We know that w-- (e, Ae+ h), with
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qH(h) 4B, is a point in W such that re(w)
--E, ((1.5)). By (3.6), any other point w’ such
that 7(w’) E is of the form w’--gw, with g
-(a, s) G(q). Our assertion follows if one
computes the coordinates xo, Yo of the point Po in
Ew, E by making use of the explicit formula in

(1.7) of I ). Q.E.D.
(3.11) Remark. Needless to say, one verifies
(3.10) derectly. Be that as it may, it is nice to
have found a (double valued) map a Pa (xa,
y) form k to E in (3.10), (end of remark).

Since k is algebraically closed, one should
classify E according to isomorphisms over k. If
E, E’ E are given by Weierstrass form of
type (1.4) with coefficients (A, B), (A’, B’), re-
spectively, then, as is well-known, we have
(3.12) E

uA" -A + 3r,
$14B" B -+- 2Ar + 3r,
0 r(B + Ar + r), u(4= 0), r k,, j(E) j(E’)

where
(3.13) j(E) 2S(Az- 3B)/(BZ(A- 4B)).
In view of (3.6), we can view j as a function of
w=(u,v)W"
(3.14)j(zr(w)) 26(u, v) + 3q(u)q(v))

/(q(u) q(v) ( q(u) q(v))
In particular,
(3.15) j(zc(w)) 263=> (u, v) 0 or

+-- 3 (q(u) q(v)

{}4. Real number field. Taking V= R2,
consider the standard quadratic form q(x)
+ x2, x’- (xl, x2). Hence the metric space
(V, q) is the space of plane Euclidean geometry.
Here, the set W is nothing but the set of pairs
w-- (u, v) of independent vectors; namely

b2
triangles (a, b, c) such that a
q(v) and c2--q(u-v) =q(u)+q(v)--2(u, v),
(the law of cosine). We have

1
bA (u, v) =(a+ -c)

(4.1) B ((u, v)- q(u)q(v))/4=
s(s- a)(s-- b)(s-- c).

The elliptic curve Ew is the one introduced in [1]
in connection with the antique congruent number
problem. Needless to say, if we pursue an analo-
gous theme for (V, q) with V= R3, q(x) xl-- x) then we+ x + x (resp. q(x) x + x2
will be led to triangles on the sphere q(x) 1
(resp. on the upper half of the hyperboloid of two
sheets q(x) --1). We hope to come back some-
time to the study of such a relationship between
non-Euclidean geometry and elliptic curves.
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