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1. Introduction. Explicit form of the fun-
damental unit of real quadratic fields Q((-)is
not well-known except for real quadratic fields
of Richaud-Degert type.

In this paper, for all real quadratic fields
Q((d) such that d is a positive square-free inte-
ger congruent to 1 mod 4 and the period ks in
the continued fraction expansion of the quadratic
irrational number cos (1 + (d)/2 in Q(fd) is
equal to 3, we describe explicitly Ts, Us in the
fundamental unit ea (Ts + Us (-)/2(> 1) of
Q((-) and d itself by using two parameters l, r
appearing in the continued fraction expansion of

cos. Finally, as an application of this theorem, we
provide a result on class number one problem for
real quadratic fields and on Yokoi’s invariant ns.

For the set I(d)of all quadratic irrational
numbers in Q(v), we say that cr in I(d) is re-
duced if a> 1, 1 < a’ < 0 (a’ is the conju-
gate of a with respect to Q), and denote by
R(d) the set of all reduced quadratic irrational
numbers in I(d). Then, it is well-known that any
number c in R(d) is purely periodic in the con-
tinued fraction expansion and the denominator of
its modular automorphism is equal to the fun-
damental unit es of Q(/), and that the norm of

es is (-- 1) k (see, for example, [2] p. 205, 215).
Moreover the continued fraction with period k is
generally denoted by [ao, al,..., ak], and Ix]
means the greatest integer not greater than x.

Now, for any square-free positive integer d
congruent to i rood 4, we put d a

2 + b, 0 < b
<- 2a (a, b Z). Here, since
both integers a and b are uniquely determined by
d. Then, our main theorem is as follows"

Theorem. For a square-free positive integer d
congruent to 1 mod 4, we assume ks 3. Then, in
the case that a is odd,

cos [(a + 1)/2, 1, 1, a],
and

(Ts, Us) ((l2 + 1)r + l(12 + 3), 12 + 1)
hold for two positive integers l, r such that a-

(12+ 1)r + 1.
Moreover in this case, it holds
d= (12+1)2r+21(12+3)r+12+4.
In the case that a is even,

cos [a/2, 1, 1, a- 1], (Ts, Us) (2a, 2)
and d a2+ 1

hold.
In order to prove this theorem, we need

several lemmas.
Lemma 1. For a square-free positive integer

d > 5 congruent to 1 modulo 4, we put co (1 -+-
(d)/2, qo [co] and C-OR qo- 1 + W. Then
co q R(d), but COn R(d) holds. Moreover for the
period k of con, we get wE [2qo- 1, ql,..., qk-]
and co [qo, q,..., q,-1, 2qo 1]. Furthermore,
let con (PkcoR -+- Pk-) / (QkcoR 4- Qk-) [2q0

1, ql,. qk-, COn] be a modular automorphism

of con, then the fundamental unit ed of Q((d) is

given by the following formula:
s (T + U-d)/2 > 1,
T (2q0- 1)Q + 2Q_, U Q,

where Qi is determined by Qo- O, Vl- 1, Qi+x
qQ + Q_, (i >_ 1).
Proof Denote by Nm and Tr the norm and

the trace respectively. Then con (2qo- 1 4-
(d)/2 belongs to I(d), because con is a root of
the equation X- Tr(coR)X-+- Nm(coR) -0 and
the discriminant of this equation is Tr(con) 2-
4Nm(con) d. Moreover since wE’= [co] co
> 1 and 2qo-- I <-d, we get 0 > con’ >
1. Hence con belongs to R(d). Since [con]
[[co] I +w] 2qo-- 1 and COn is purely
periodic, con and co have expansions described in
this Lemma respectively. Since QkcoR + Q_ is
the fundamental unit of Q(-d) with norm (-- 1)
(see, for example, [2] p. 215), es Q{qo- 1 +
(1 + (-)/2} + Qk_l ((2qo- 1)Q + 2Qk_ q-

Q(-)/2. Thus, the proof of Lemma 1 was com-
pleted.

We apply the recurrence formula in [1] to
cog, and get useful parameters essentially con-
nected with partial quotients of the continued
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fraction expansion.
Lemma 2. For a square-free positive integer

d, we put d= a + b(O ( b <_ 2a, a, b Z).
Moreover, let coi- 1 + 1/co+1 (1- Icon], i >-- 0)
be the continued fraction expansion of co coo
R(d). Then each co is expressed in the form coi
(a-- r d- x/-d)/c (c, r Z), and 1, c, r can
be obtained from the following recurrence formula"

COo- (a- ro + /-d)/Co,
2a- r- cli
c+ c_ + (r+ r)l (i >- 0),

where 0 <-- r+l c, c_1- (b d- 2aro- r)/Co.
Moreover for the period tc >_ I of coo, we get

1- lk_i(1 <-- i <-- k- 1),
r- r_+, c- c_ (1 <_ i <_ k).
For the proof of this lemma, see T. Azuhata

[11 p. 127, 128.
Moreover, since R(d) co implies 1/w

R(d), we obtain easily the following lemma:
Lemma 3. Put co coR in Lernrna 2. Then
ro-- rl= a-- 1o: a--2qo-I- 1,
Co 2, cl c_1 (b + 2aro- ro)/Co,
lo- 2qo-- 1, 1= q(l<_ i<_ k- 1).
Proof From Lemma 2, we obtain immediate-

ly lo 2qo- 1, Co 2 and ro a- lo, because

COo- [2qo- 1, ql,...] [lo, 11,...] and a- ro
1o. Moreover

(d)/(b d- 2aro- r) (1o + v/-d)/c_l holds, and
hence cl c_1, rl- a- lo. Consequently we
have ro-

2. The proof of main theorem. We put
(1 + v/-d)/2 from now on and prove our main

theorem.

Proof In the case of even a, we can put
d a

2 d- 4m -+- 1 for a positive integer m satis-
fying 0 <_ 4m ( 2a. Since qo [co] [([x/d] -+-
1)/2] [(a+ 1)/2] a/2 and coR= (a-- 1
-+-x/-d)/2, it follows from Lemma 3 that ro

a- 2qo
2aro- ro)/2-- a+ 2m and 1o- a-- 1. Let
[a- 1, 11, 12] be the continued fraction expan-
sion of coR. Then, by Lemma 2 we have 2a--rl

(a+2m)ll+ r because of cl-- a+2m.
Hence, we get (2-- ll)a 2rnll + rl d- r. > 0,
which implies 11 1. So, we have a 2m-t-r
-+-1. Moreover, it follows from Lemma 2 and
Lemma 3 that c.= r d- 1, 2a-- r= c.l.+ ra,
1.= 11 I and ra- r 1 respectively, and
hence a--% d-1 holds. Therefore, m 0 fol-
lows from r. -+- 1 2m -+- r. d- 1. Thus we get d

2
a d- 1. Since co [a/2, 1, 1, a- 1] by

Lemma 1, Q. 1 and Q3 2 are obtained, from
which we have T- 2a and U--- 2 immediately.

In the case of odd a, we can put d- ad
4m for a positive integer m satisfying 0 (4m
<_ 2a. In the same way, since qo- (a-t-1)/2
and coe (a + x/-d)/2, we get ro rl a- 2qo
-t- I 0, Co-- 2, cl-- 2m and 1o= a. Let coe=
[a, 11, 1.] be the continued fraction expansion of

co. Then, by Lemma 2 we have 2a-- 2rnll d- r2,
c.= Co+ (r2-- rl)11 =2 + rll cl, and hence
2a- (2 + r11)11 d- %. Here, since r is even, we
can put r2 2r for an integer r. If we put 11 1
again, then a= r(f + 1) d- 1 holds. On the
other hand, 2m 2rl d- 2 implies rn rl d- 1.
Since a is odd, it does not happen that both r and
1 are even. Since co-- [(a-+- 1)/2, 1, 1, a] im-
plies Q.= 1 and Qa= 12+ 1 by Lemma 1, we
obtain T-- r(l2+ 1)+ 1(1+3), U- 1+ 1
respectively. Moreover, we can also get im-

mediately d= (12 + 1)2r2+21(1+3)r+ 1d:
4 because of b- 4(rl + 1). Thus the theorem
was proved completely.

Next we apply above theorem to Yokoi’s in-
variant nd.

Corollary. Let d be a square-free positive in-

teger congruent to 1 modulo 4 and assume kd 3.
Then it always holds nd ITd Uf] =/= O. In this
case, there exist exactly the following 11 real
quadratic fields Q(-) with class number one"

d
17, 37, 61,101,197, 317,461,557, 667, 773, 1877.

Proof Under the same notation as main
theorem, in the case that a is even, Corollary is
clear from nd qo #= 0. In the other case, we get
easily U- 1(1 d- 3) la(l- 1) -+- 1(21- 3)
d- 1, and so U > 1(1d-3) because of 1> 1.
Hence nd r =/= 0 holds. Therefore, by H. Yokoi

[3], there exists only a finite number of d such
that the class number of the real quadratic field
Q(x/-d) is one and kd 3. The tables I, III in [3]
show that such d are exactly eleven primes de-
scribed in this Corollary.
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