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1. Introduction. Let GL(n, C) be the Dirichlet series which can be utilized to calculate
group of all invertible matrices of degree n with I I. The methods we have used in [17] are
entries in the complex number field C. An ele- found here useful. The detailed discussion with
ment A in GL(n, C) is called regular if the cen- proof will appear elsewhere.
tralizer T of A in GL(n, C)forms a maximal We remind that zeta functions of various
split torus of the reductive group GL(n, C). By kinds have been introduced into the study of
GL(n, ) we denote the modular group of degree algebras in the papers [2]-[4], [6], [9]-[11], [13]
n over the ring of integers Z. Let be a regular and [20]. Particularly, Solomon’s idea in dealing
element in GL(n, I2) and R Z[] the ring with group algebras in [20] and its generalization
generated by over Z. We shall define as fol- by Bushnell-Reiner [2], [3], concerning semisim-
lows the ideal class semigroup G of R. An ideal a ple Q-algebras, have given suggestions for this
of R is nonsingular if the index (R:a) of addi- paper.
tive subgroup a of R is finite. Na (R:a) is We shall define the norm in the ring Q[].
called the norm of a. Let Q[] be the ring gener- Let T be the centralizer of in GL(n, C). We
ated by over the rational number field Q. A can choose a subset
R-submodule a of Q[] is called a fractional ideal .Q {, ’,..., (-)}
if there exists an invertible element cr in of T satisfying
Q[] such that oca is a nonsingular ideal of R.

(1.1) A(C) II (C ‘’)- ’)) GL(n, C).
Let A be the set of all fractional ideals of R. A is
a semigroup with the canonical multiplication. is the set of algebraic conjugates of . By (1.1)
The group Q[] of all invertible elements in we can prove that the characteristic polynomial
Q[] acts on the set A. We classify A into the f(X) of is factorized as
orbit classes under Q[]. The set of these clas- (1.2) f(X) (X- )(X- ’) (X-
ses forms a semigroup G which will be called the Let c be an element in Q[] and p[X] a polyno-
ideal class semigroup of R (cf. [17]). mial with degree < n satisfying c p(). We

(i) (i)
We recall that these algebras R Z()and define i-th conjugate cr

i)
by cr p( ). The

the ideal class semigroups G of these algebras norm Nc is defined by
(n-l)

have already been studied in [14],[22], where a Nee= cecd"’c
bijective mapping of G to the set of conjugacy Finally we shall state the properties of the
classes Gz(f)/GL(n, ) given in the following ring of integers O and of the unit group Eo of
sense. Let f(X) be the characteristic polynomial Q[]. Bearing in mind that all eigenvalues of
of (which has only simple roots as is regu- are mutually distinct we see that f(X) is decom-
lar). Gz(f)is the set of elements of GL(n, Z) posed into irreducible divisors
with the chracteristic polynomial f(X), which is fx(X), fz(X),..., fe(X)
decomposed into GL(n, )orbit classes, the ac- over Z with multiplicity one. We put hi(X)=
tion of an element of GL(n, ) being adjoint ac- f(X)/fi(X). Then there exist the polynomials
tion. Gz(f)/GL(n, ) means the orbit space, ux(X), uz(X), ue(X) with rational coeffi-
The finiteness of the space Gz(f)/GL(n, Z) has cients such that

gbeen proved by [19] ,[23](cf. also the related ui(X)hi(X)= 1.
works [15], [21],[12] and [8]). i=

The purpose of this note is to develop the We put e ui()hi(). Then we have
arithmetic of R and to introduce in particular
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(1.3) 1 e, and ee 6,e
i=1

where 6i, is Kronecker delta. Let i be the res-
triction of Q-linear endomorphism of Q[] to
Q[]ei. Then we have Q[]ei Q[i]ei. Furth-
ermore is a root of the irreducible polynomial

f(X). Therefore ki Q[] is an algebraic num-
ber field over Q, and the ring Q[] is decom-
posed as
(1.4) Q[] ke ke ke.
Since e is a root of the monic polynomial X-X in Z[, ei belongs to O. Let O be the ring of
integers of k. Then we have
(1.5) O Oe @ 0e 0geg.
The following lemma is crucial to study the
structure of the ring Q[] (cf. Cororally 4.7,
[17]).

Lemma 1.1. Let a ale + aze + +
aee be the decomposition of a in Q[] as in (1.4).
Then we have

where 1n is the identity matrix of degree n.
We define the unit group Eo of Q[] by

(1.6) Eo {e O Nt 1}.
Let E. be the unit group of the algebraic

number field k. By Lemma 1.1 Eo is decomposed
as
(1.7) Eo E,e, Ee Ee.
It is well known that the unit group E is a
direct product of a finite group and a free abe-
lian group (cf. Ill or [51). Hence by (1.7) Eo is a
direct product of a finite group Ho and free abe-
lian group Eo. We remark that the rank of Eo is
equal to r + c- g where r (resp. 2c) is the num-
ber of all real (resp. complex) roots of f(.

2. Reduction theorem. Let C(a) be a fixed
class in G represented by an integral ideal a of
R. The pseudo inverse ideal a of a is defined by

a is a fractional ideal of R. Let R be the subring
of Q()defined by Re Re. R is generated
by over Z. We put

R Re Re Ree.
R is a subring of O with finite index. In the
same manner as we have defined R we can de-
fine a and a a (resp. a )is an ideal(resp, a
fractional ideal) of R Let E be the subgroup
of Eo defined by

e Eo
Lemma 2.1. The group index (Eo E) is fi-

hire.

Define Ea and Ha by

Ea=Ea N Eo, Ha-Ea Ho.
Ea is a direct product of Ea and Ha. Since Ea

stabilizes m e, the set ae is classified in Ea-orbit
classes. Let (m e) be the set of all invertible ele-
ments in me. (m e) /Ea is the set of all these
orbit classes and [] the class which is repre-
sented by 2 in (he).

Definition 2.1. Let B* be the character group
of the finite group B-- m e /a. For each X in B*
we define a Dirichlet series L(s X) by

L(s’x) E 2:(2 moda)

We remark that Z( rnod (l) and hence L(s"
Z) depend on the choice of the representatives /.
We shall consider for a moment a choice of these
representatives as fixed.

Let De
be the discriminant of the ring Re

De.s given by
e g

D H Nf,’(,) 1.
Theorem. 2.2. The series L(s:z) is conver-

gent on the complex half plane (s) > 1. Furth-
ermore we have

lim (a-- 1)gL(a’2:) / (C)’ 1
-+o 0, 2: =/= 1

where
2"+r (Eo "(E))IR(Eo)I

(C)
Na Nav/I D$

The proof of this theorem is based on the
standard method to calculate the density of ideals
due to Dedekind and the Fourier analysis of one
variable.

Definition 2.2. Let C(a) be a fixed class in
G. We define the zeta function of the class C(a) by

1E
c() (N)

The following reduction theorem is proved
by the orthogonality relations of the characters
of the finite group B (cf. Theorem 7.3, [7]).

Theorem 2.3. We have

c(S) ((E) E) (Na) s

{ E L(s’2:)}.
(a* a) IH l

3. Main theorems. By Theorem 2.2 and
Theorem 2.3 we can prove the following theorem.

Theorem 3.1. Let c(s) be the zeta function
of the class C(a). Then we have
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lim (a- 1)c(S) 2+zc(Eo’E)

where D Nf () is the discriminant of R,
R(Eo) is the regulator of the unit group Eo, Ho is
the finite subgroup of Eo and r (resp. 2c) is the
number of all real (resp. complex) roots off(X).

We define, for each ideal b of R, a(b) by
NaNa

a() (Eo E)"
We see that a(b) is a class function (i.e. a(a)
a(b) for all b in C(a)). Consequently by
Theorem 4.1 we have the following.

Theorem 3.2. Define a Dirichlet series
(s) by

a(b), (s) Z
(N) s

where the summation runs over all nonsingular
ideals of R. Then R(S) is holomorphic on the com-
plex half plane (s) > 1, and we have

R(Eo)[
lim (a- 1)c(a) D i"a-.l+0
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