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0. Introduction. We denote by @, the
rational p-adic field for a prime p. It is
well-known that there exist only finitely many
extensions of a fixed degree over @, in a fixed
algebraic closure of @, (cf. Weil [4] p. 208). Fu-
jisaki [1] exhibited all extensions over @, whose
Galois group is isomorphic to the quaternion
group of order 8. In this note, we shall exhibit all
extensions L over @, whose Galois group is iso-
morphic to the dihedral group D, of order 8 We
call such extensions D,-extensions. We shall
show that there exist no such extension for p =
1 mod 4, one extension for p =3 mod 4 and
eighteen extensions for p = 2.

We denote by K the quadratic extension
over @, such that L/K is a cyclic extension of
degree 4. We denote by K, and K, the other two
quadratic extensions over @, in L. We denote by
M the compositum of K; and K, We denote by
M; and M/ the quadratic extensions over K; in L
which are not Galois extensions over @, We
deal with the case of odd primes in § 1. We ex-
hibit all D,-extensions over @, in § 2 by getting
all such M; and M/

We remark that Yamagishi [3] computed the
number of extensions K over a finite extension
k/Q, whose Galois group Gal(K/k) is isomor-
phic to a fixed finite p-group (cf. see also cited
papers in [3]).

1. The case p # 2. Let L/Q, be a D,-
extension. L/ @Q, has four intermediate fields M;,

1, M,, M, of degree 4 which are not Galois ex-
tensions over @,. We see that they are totally
and tamely ramified, because p is an odd prime.
We see by Serre [2] that @, has four totally and
tamely ramified extensions of degree 4. Therefore
we see that @, has at most one D,-extension. In
the case p = 1mod4, we see that @, has no
D,-extension, because Q, W)/ Q, is a totally and
tamely ramified Galois extension of degree 4. In
the case p = 3mod4, we see that Q,(yY— 1,
VE)/Q,, is a D,-extension.

2. The case p = 2. Let L/Q, be a Galois
extension of degree 8. We see that the Galois
group of L/Q, is isomorphic to D, if and only if
L contains an intermediate field of degree 4
which is not a Galois extension over @,. Thus it
is sufficient to construct all quadratic extensions
over K; which are not Galois extensions over @,,
where K; is a quadratic extension over @, We
get M, = K,;(e) for an ¢ € K;* such that &’/¢
is not square in K; for the generator o of the
Galois group of K;/Q, We see M;= K,(/a—a), L
= K,(Je , /s_a) and M = K,(/e’). So we ex-
amine a representative system of K,* /(K;)’. We
take all pairs {e, e’} of the system such that ¢ #
¢’mod (K,)*. By putting L = K,(/e , /67), we
get all D,-extensions L/ Q,.

It is well-known that all quadratic exten-
sions over @, are Q,(yY— 1), Q,(y—5), Q,(/5),
Q,v2), Q,(V— 2), Q,(y10) and Q,(y— 10).
Next we examine all possible cases for K, We
denote by o the ring of integers of K;.

2-1. K, = Q,(Vm) form = £ 2, £ 10.

In this case, p = (Ym) is the prime ideal of
K,. We see that all elements of 1 + ps are square
in K, Therefore we get K, /(K;)* = ({/m)/<m))
X /1 +m+2ym,1+p>)by1l+m+2
Vm=QQ+ x/ﬁ)z. For constructing D,-extensions,
it is sufficient to examine elements € and evm,
where e=a+ bym for a=1,3,5,7 and b=
0,1,2,3. We take e(resp. eym) such that ¢, &°,
eQ+m+2ym) and A + m + 2 Vm) (resp.
e, — e, e(l+m~+2ym) and — A +m+ 2
Vm)) are different modulo p° each other. Then
we get D,-extensions as follows:

A =1Q,01+v2,/=1), (3 +v2,/=1),
Q.(V2,v=1), Q,(/3y2, y=1)},

A, =1{Q,(V=2,V—1), Q,3/—2, /= 1)},

B, ={Q,(/1+V=2,V=5), (5 + V-2,
V—5)},

C,=1{Q,WV—20 + V- 2), v5),
Q,(V=2Q1 + 3/=2), V5)},

C,= {Q,(/y=— 10 + /= 10), v5),
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Q,(W=10Q + 3/— 10), v5)},

D, = {Q,(y1 + 410, vy—1), Q,(y3 + 10,
v=1), Q,(4y10, v— 1), Q,(y3/10, y— 1)},

D,={Q,(/y—10,v—1), Q,(y3/— 10, y— 1)},

E, ={Q,(/1 +vy—10,vV=5), Q,(5+ /- 10,
vY—5)}.

2-2. K,=Q,4Ym) form=—1, — 5,

In this case, p = (1 + ym) is the prime
ideal of K, We see that all elements of 1 + p°
are square in K.

First we deal with the case K; = Q,(y— 1).
We get K /(K )? = ({1 + y= 1)/2/—= 1)) X
(0 K7, 1+ D) by 7=y— 1 modp’. We ex-
amine elements € and e(1 + y/— 1), where e = a
+b6Q++v—1) for a=1,3,57 and b=
0,1,2,3. We take ¢ (resp. e(1 ++v/— 1)) such
that ¢, ¢’, 7¢ and 7&° (resp. &, —y— 1¢&°, 7¢ and
V= 1¢&°% are different modulo p5 each other. Then
we get D,-extensions as follows:

A, 7_{Q2(¢1 +v—1,v2),Q,¢3Q +y—1),

2)},

D, 7_{Qz(¢1 + 3/—1,v10), @,(/1 +5/— 1,

10)},

FF}{QZ(V3 +2/—1,v5), Q,(2++vV—1,

5)}.

Next we deal with the case K; = Q,(y/— 5).
We get K/ /(K)'= K1+ /=5)K—4+2
V=5>) x (0°/43,1 +p>) by 3=y—5 mod
p°. We examine elements ¢ and &(1 +y—5),
where ¢e=a+ b(1 ++v—5) for a=1,3,5,7
and b = 0,1,2,3. We take ¢ (resp. e(1 +v/—5))
such that e, &’, 3¢ and 3¢’ (resp. & (2 +
5vy—5)e’, 3¢ and 3(2 + 5¢y— 5)&°) are diffe-
rent modulo p5 each other. Then we get
D,-extensions as follows:
B,=1{Q,(/—1+5/—5, V= 2),

Q,(/3 +5/—5,y—2)},

E, 7_{?2(\/1 ++v—5,v2), (50 ++vV—5),

2)},

F,={Q,y3+2/—5,y—1), Q4+ y—5,
v—1)}.

2-3. K; = Q,(/5).

As K,;/Q, is unramified, p = (2) is the
prime ideal of K, We see that all elements of
1+ p3 are square in K;. We see that 1 + 6, 2 +
36(= (1 + 6)», 5,51 + 6) and 5(2 + 36) are
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square in K, where 6 = (1 4+ v5)/2. We ex-
amine elements ¢ and 2¢, where ¢ = a + b0 for 0
< a<"7,0< b< 7 such that either a or b is
odd. We take & or 2¢ such that en and &’n are
different modulo p3 each other, where 7 runs
over {1,1+6,2+36,5,50+ 6,2+ 76}
Then we get D,-extensions over @, as follows:

F1 = {Qz(m, F—T), Qz(m, \/:T);

Q.(/22+y5) ,vy—1), Q24 +5) ,
y—1)}.

2-4. Concluding remark. We get all D,-
extensions over @, as above. But we doubly
counted L, because K;(Ve , /57) coincides with
K,(V&, /?) for a suitable £ € K, , where 7 is
the generator of the Galois group of K,/Q,. By
comparing M and K, we get
A=A, U A, where M = Q,(y— 1, v2) and K
= Q,(y— 1) in A, and K = Q,(yY— 2) in A, re-
spectively,

B, = B,, where M = Q,(y— 2,v/—5) and K
= Qz(\/ﬁ),
C,= C,, where M = Q,(/—2,+/5) and K =
Q,(/5),
D,=D,U D, where M= Q,(/—1,/10)
and K= @Q,(Yy— 1) in D,
and K = Q,(Y— 10) in D,, respectively,
E,=E, where M = Q,(y2,y/—5) and K =
Q.(/2),
F,=F,U F,, where M= Q,(Yy—1,+5) and
K= Q,y—5) in F,
and K = Q,(Y— 1) in F,, respectively.
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