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1. Introduction. In the present paper, we
discuss the integrability of infinitesimal auto-
morphisms of linear Poisson manifolds. An in-
finitesimal automorphism X is said to be integr-
able, if it is a Hamiltonian vector field.

Let G be a connected Lie group with Lie
algebra 9, and let g-* be the dual of g. The linear
Poisson structure on g is defined as a Lie algeb-
ra structure on C(g*) satisfying Leibniz identi-
ty. This is equal to giving an antisymmetric con-
travariant 2-tensor P on which satisfies Jaco-
bi identity. More precisely, for all f, g
C (g*) and 12 g the Poisson bracket is given
by

{f, g} (12) (12, [duf,
where [, is the Lie algebra operation in

fl, (,) is the pairing of fl* with fl, and duf is the
differential of f considered as an element of fl in-

**stead of fl In the case of general Poisson man-
ifolds, the Poisson bracket is given by {f, g}
(P dfA dg).

We denote by G’12 the G-orbit passing,
through 12 with respect to the coadjoint rep-,
resentation of G on 6. By the theorem of
Kirillov-Kostant-Souriau, each G-12 is a symplec-,
tic leaf in (Hence it is even dimensional.) Let
Gu be the isotropy group at /2. Then G’12 is dif-
feomorphic to G/Gu. For more informations ab-
out linear Poisson manifolds, see [7].

Now we shall define three (infinite dimen-

sional) Lie algebras of vector fields on 9 By an,
infinitesimal automorphism of we mean a

smooth vector field X on such that L(X)P--
0, where L(X)denotes the Lie derivative along
X. We denote by the Lie algebra consisting of
such vector fields X. Let be a Lie subalgebra
of consisting of vector fields X such that each
X is tangent to symplectic leaves G’12. Given f
C (9 {f "} defines a derivation of Coo(9").
Hence there corresponds a vector field , which
we call the Hamiltonian vector field. And we de-
note by : the Lie algebra of Hamiltonian vector

fields. Then there are canonical inclusions:
P J 2)W. Direct calculation shows that both
Lie subalgebras J and J{ are ideals of

A vector field X of P is called "integrable"
if it belongs to J{. If all vector fields of are in-
tegrable (i.e. P Jg), then P is called integrable.

In the case of 9 0(3, R), we proved that is

integrable ([3] and [4]). In this paper, we treat the
case of t 1(2, R).

Recall that the quotient space /W is no-
thing but the first Poisson cohomology ([1] and
[5]). There are many papers about Poisson coho-
mology of "regular" Poisson manifolds ([1], [5], [6]
and [8]). Note that linear Poisson manifolds give

typical examples of "nonregular" Poisson man-
ifolds. Therefore our study can be regarded as

the first approach to the study of Poisson coho-
mology of "nonregular" Poisson manifolds.

2. Chevalley-Eilenberg complex. In this
section, we shall express the integrability of vec-

tor fields in terms of Lie algebra cohomology (see
for example [4]). Let (V, p)be any representa-
tion of the Lie algebra 9 on a vector space.
Associated to this representation, there is the
Chevalley-Eilenberg complex:

0 AI* ’ A"t*v v(R) v(R)
where coboundary operators are defined by set-
ting

((0a) (1) i0(:1)
(a) (/) p(x) (())

0(5)(5()) 5([, ,]),
for all c E V and /9 e V( A1CI* and 1,
It holds that oq" 3o 0. The quotient Ht(9;
(V, p))= kernel ((3)/image (3o) is called the
first cohomology group of with coefficients in

the module (V, p). Recall that when 9 is semi-

simple and V is finite dimensional, the space
H(g; (V, p)) vanishes. Let x, x, x, be the
basis of . Then xl, xz,..., xn are considered as
coordinate functions on We denote by F{}
the space of all formal functions with variables

x, xz,..., Xn. F{} can be identified with the set
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of all formal Taylor expansions of functions f
C(g*) at the origin. Put V F(g). Then
F(g) @ A3* is the Lie algebra of all formal vee-,
tor fields on g and F(3) is a projective limit of
finite dimensional g-modules. Hence the first
eohomology group still vanishes when g is semi-
simple.

We shall define the action of g on the space
F(g) by

Ofp (f) E C.
j,k <n

for any f F {g}. Then p is the representation
of g on F{g}. A direct computation shows that
the map - L()P is identified with the
coboundary operator in degree 1"

01 F() @ Ag*-- F(} A*.
Similarly, the map g -* is identified with the
coboundary operator in degree 0"

00" F(3) --* F{) @ Alg *.
Kernel (01) is the space of all formal infinitesim-
al automorphisms and image (00) is the space of
all formal Hamiltonian vector fields. Since
H(g, (F{!), p)) -0 when is semisimple, the
integrability problem was affirmatively solved in
the formal category. Namely, every formal in-
finitesimal automorphism is necessarily a formal
Hamiltonian vector field.

Proposition A ([4]). Let g be a semisimple Lie
algebra. Then for any element X of , there exists
an element of such that the formal expansion

ofX at the origin coincides with that of .
A C-vector field X is said to be flat (at the

origin) if the formal Taylor expansion of X at the
origin vanishes. The above proposition states
that for any element X of , there exists an ele-
ment f of such that X- f is flat at the ori-
gin, if is semisimple.

3. Results. Throughout this section, fi--
[(2, R). We can choose x, y, z as coordin-
ates functions on [(2 R)* as follows:

{x,y) =-z, {y,z} =x, {z,x} =y.
Hence the linear Poisson structure P on [(2, R)*
is given by

P----z-A-+Xy A--+y--A 0x"
With respect to the coadjoint action of the

Lie group SL(2, R) on [(2, R)*, coadjoint
orbits are origin, hyperboloid of one sheet, of two
sheet, and circular conics. Every Casimir func-
lion is of the form (t), t-- x+y z, where

(t) is a C-function of one variable. The space
of Casimir functions is denoted by , and the
subspace of Casimir functions which are flat at
the origin is denoted by ’.

Identifying l(2, R)* with R3, the pair
(R 3, P) can be considered as a linear Poisson

manifold. We denote by L the set of formal vec-
tor fields which leave the Poisson structure P in-
variant. Let F{9} be the space of formal func-

R3 *lions on Then L F{9} @ Here the basis

offl*is Ox’ Oy’ Oz PutH= {X/[ f F{g}}.

By the remark stated in the previous section, we
have L- H. E. Borel showed that formal Taylor
expansion mapping C(9*) ---* F{9} is surjective.
Hence ---* H is surjective and moreover -- H-L is also surjective. From now on, we denote
this linear mapping by T and put ker T-’.
(’ is an ideal of .) Under these notations, we

prove some lemmas.

Lemma 1 ([21). Let X= f- + g +
0

R.h- be a smooth vector field on

(i) X belongs to . if and only if there exists

(t) such that xf + yg- zh (x + y2_ y2),
and div( 2 (x + y z), where div(
of cog

(ii) X belongs to fl if and only if xf+ yg-
zh 0 and div( 0.

Lemma 2. Let (O and fl(t) be C=-functions
which are fiat at the origin. Put

m(t)
a(t), t> O.

s(t)
t > O.

Then m(t) and s(t) are C=-functions, and the fol-
lowing two vector fields X and Xz belong to "x’m(x + y z
X Oxx+ 2)y" m(x + y Z

Oy’x+y
y s(x + y z

X2 Oyy --z
z’s(x + y z2)

Oz"y

Proo Use Lemma 1 and then direct cal-
culations. Q.E.D.

Lemma 3. (i) = +’. (ii)/
’/’ N .
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Proof (i) For any element X of LP, there ex-
ists Y such that T(X) T(Y). Hence X--
Y LP’. (if) is clear from (i). Q.E.D.

By Lemma 1, we get a linear mapping A:X
LP---* . For this linear mapping A, we

have , cg,Lemma4. A(’) ’andAle, is

surjective.

Proof. Let X f-o-- + g + h-o- be an

element of . Then f, g, h are flat at the origin.
Put F(x, y, z) (x +y-- z) =xf+yg

zh. Since for any positive integer k,
02F
Ox2

(0,0,0) 0, it follows that (0) 0.

Hence we have (t) ’. Conversely, for (t)
W’, put

m(t) [0, t

_
O, {(t), t_0,

(t), t>0.
s(t)=

0, t>0.
Then m(t) and s(t) are Coo-functions. And if we
choose X and X. as in Lemma 2, then X X1 +
X. ’ and we get A(X) . Q.E.D.

Note that ker(A[e,)= ’71 . Then we
have LP’/(LP’ 71 )= ’ by Lemma 4. On the
other hand, it holds (’/’ 71 kf)/(LP’ f’l /’
f) ) LP’/(LP’ f’l ) ’. Thus we have only
to determine the structure of the space
)/(e’ n ).

Let B :LP’ N --H1(, R) be a linear
mapping defined by B(X) [i(X)o9], where
is an arbitrary hyperboloid of one sheet and o) is
a syrnplectic form on . For X ’ N , since
i(X)o9 is a closed 1-form on , the mapping B is
well-defined. We should note that it does not de-
pend on the choice of , whether [i(X)o9] becom-
es a generator of H1(, R).

Prolmsition B. ker(B) ’ f) .
Outline of Proof It is clear that ker (B)

LP’f3 . We prove the converse. Let X ker(B).
If P (x, y, z) is a point on a hyperboloid of
one sheetl"x2+y z c (c > 0),put

F(x, y, z) --i(X) o9,

where 7"1 is a path on 1 joining (c, 0,0)with
P (x, y, z). Since X ker(B), the value of
the right hand side does not depend on the choice
of 7"1. If P--(x, y, z)is a point on a hyperbo-
loid of two sheets .2"x -4- y z c
(c > 0), put

F(x, y, z) Jo i(X)w.

Here if z > 0, 7"2 is a path on the upper hyperbo-
loid of two sheets 2 joining (c, 0,0) with
P (x, y, z) and, if z < 0, it is a path on the
lower hyperboloid of two sheets 2 joining (-- c,
0,0) with P (x, y, z). Since each sheet is sim-
ply connected, the above integral does not depend
on the choice of 7"2. On the subset R3- (circular
conics}, it clearly holds that the function F(x, y,
z) is smooth and X-- XF.

Let Q- (x, y, z) be a point on the circular
conics. (Q may be the origin.) Then the value
lim F(P1) is completely decided, where P1 is a
PIQ

point on 1. Similarly, the value lim F(P2) is
P2"-’Q

also completely decided, where P2 is on
Moreover, we get lim F(P) lim F(P2). Hence

PI-*Q P2"-*Q

we can define the new function/(x, y, z) by
F(x, y, z), if (x, y, z) R

{circular conics},
’(x, y, z) lim F(P) lim F(Pz), if

PI*Q P2"Q
Q-- (x, y, z) e {circular conics}.

Then we can show that ’(x, y, z) is a CO_

function on R and it satisfies X X. Q.E.D.
By the above proposition, we have

)/(LP’ 7) :) R. Combining this result with
Lemma 3 (if), we finally obtain

Theorem. Hpoisson ([ (2, R) *) /R W’.
The details of the proof and further results

concerning higher order Poisson cohomology will
appear elsewhere.
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