A Decomposition of R-polynomials and Kazhdan-Lusztig Polynomials

By Hiroyuki TAGAWA
Department of Mathematical Sciences, University of Tokyo
(Communicated by Shokichi IYANAGA, M. J. A. , June 13, 1995)

The R-polynomial is defined for two elements in an arbitrary Coxeter group. These polynomials are intimately related to KazhdanLusztig polynomials introduced by Kazhdan and Lusztig in 1979 ([4]). For example, it is well known that

$$
q^{l(w)-l(x)} P_{x, w}\left(\frac{1}{q}\right)=\sum_{x \leq y \leq w} R_{x, y}(q) P_{y, w}(q),
$$

where $P_{x, w}(q)$ (resp. $\left.R_{x, w}(q)\right)$ is the KazhdanLusztig polynomial (resp. the R-polynomial).

In [2], F. Brenti found a decomposition formula of R-polynomials for symmetric groups and he showed that products of R-polynomials for symmetric groups are also R-polynomials for symmetric groups. The purpose of this article is to find a decomposition formula of R-polynomials and Kazhdan-Lusztig polynomials for arbitrary Coxeter groups in extension of Brenti's result.

First, we recall the definition of the Bruhat order and R-polynomials. Throughout this article, (W, S) is an arbitrary Coxeter system, where S denotes a privileged set of involutions in W. The standard references are [1] and [3] for the Bruhat order and R-polynomials.

Definition (Bruhat order). We put $T:=$ $\left\{w s w^{-1} ; s \in S, w \in W\right\}$. For $y, z \in W$, we denote $y<^{\prime} z$ if and only if there exists an element t of T such that $l(t z)<l(z)$ and $y=t z$, where l is the length function. Then the Bruhat order denoted by \leq is defined as follows. For x, $w \in W, x \leq w$ if and only if there exists a sequence $x_{0}, x_{1}, \ldots, x_{r}$ in W such that $x=x_{0}<^{\prime} x_{1}$ $<^{\prime} \cdots<^{\prime} x_{r}=w$.

The following is well known. For $w \in W$, let $s_{1} s_{2} \cdots s_{m}$ be a reduced expression of w, i.e. $w=$ $s_{1} s_{2} \cdots s_{m}, s_{i} \in S$ for all $i \in[m](:=\{1,2, \ldots$, $m\}$) and $l(w)=m$. For $x \in W, x \leq w$ if and only if there exists a sequence of natural numbers $i_{1}, i_{2}, \ldots, i_{t}$ such that $1 \leq i_{1}<i_{2}<\cdots$ $<i_{t} \leq m$ and $x=s_{i_{1}} s_{i_{2}} \cdots s_{i_{i}}$. This expression of x is not reduced in general, i.e. it may happen that $l(x)<t$. However it is known that one can
find a sequence of natural numbers $j_{1}, j_{2}, \ldots, j_{k}$ such that $1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq m, x=s_{j_{1}} s_{j_{2}}$ $\cdots s_{j_{k}}$ and $l(x)=k$.

Also, the following decomposition called the coset decomposition is well known. Let J be a subset of S. We put $W_{J}:=$ subgroup of W generated by J and $W^{J}:=\{y \in W ; l(y z)=l(y)+$ $l(z)$ for any $\left.z \in W_{J}\right\}$. Then, for $w \in W$, there uniquely exist $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$ such that $w=w^{J} w_{J}$, whence follows:

Lemma A. Let $y, z \in W$. If $G(y) \cap G(z)$ $=\phi$, where $G(y):=\{s \in S ; s \leq y\}$, then we have $l(y z)=l(y)+l(z)$.
R-polynomials are defined as follows:
Definition-Proposition (R-polynomial). $\mathscr{H}(W)$ is the Hecke algebra associated to W. Thal is, $\mathscr{H}(W)$ is the free $\boldsymbol{Z}\left[q, q^{-1}\right]$-module having the set $\left\{T_{w} ; w \in W\right\}$ as a basis with the multiplication such that

$$
T_{w} T_{s}= \begin{cases}T_{w s} & \text { if } l(w s)>l(w), \\ q T_{w s}+(q-1) T_{w} & \text { if } l(w s)<l(w)\end{cases}
$$

for all $w \in W$ and $s \in S$. For $w \in W$, there exists a unique family of polynomials $\left\{R_{x, w}(q)\right\}_{x \leq w} \subset$ $\boldsymbol{Z}[q]$ satisfying

$$
\left(T_{w-1}\right)^{-1}=q^{-l(w)} \sum_{x \leq w}(-1)^{l(w)-l(x)} R_{x, w}(q) T_{x} .
$$

We put $R_{x, w}(q):=0$ if $x \not \leq w$ for convenience. $R_{x, w}(q)$ is called the R-polynomial for $x, w \in W$.

By using R-polynomials, we can define Kazhdan-Lusztig polynomials as follows:

Definition-Proposition (Kazhdan-Lusztig polynomial). There exists a unique family of polynomials $\left\{P_{x, w}(q)\right\}_{x, w \in W} \subset \boldsymbol{Z}[q]$ satisfying the following conditions:
(i) $P_{x, w}(q)=0$ if $x \nless w$,
(ii) $P_{x, x}(q)=1$,
(iii) $\operatorname{deg} P_{x, w}(q) \leq \frac{1}{2}(l(w)-l(x)-1)$ if $x<w$,
(iv) $q^{l(w)-l(x)} P_{x, w}\left(\frac{1}{q}\right)=\sum_{x \leq y \leq w} R_{x, y}(q) P_{y, w}(q)$ if $x \leq w$.
$P_{x, w}(q)$ is called the Kazhdan-Lusztig polynomial
for $x, w \in W$.
Our main result is the following.
Theorem A. Let $x_{1}, x_{2}, w_{1}, w_{2} \in W$ with x_{1} $\leq w_{1}$ and $x_{2} \leq w_{2}$. If $G\left(w_{1}\right) \cap G\left(w_{2}\right)=\phi$, then we have
(i) $R_{x_{1}, w_{1}}(q) R_{x_{2}, w_{2}}(q)=R_{x_{1} x_{2}, w_{1} w_{2}}(q)$,
(ii) $P_{x_{1}, w_{1}}(q) P_{x_{2}, w_{2}}(q)=P_{x_{1} x_{2}, w_{1} w_{2}}(q)$.

Proof. (i) Let $s_{1} s_{2} \cdots s_{r}$ (resp. $s_{r+1} s_{r+2} \cdots$ s_{m}) be a reduced expression of w_{1} (resp. w_{2}). Note that $s_{1} s_{2} \cdots s_{m}$ is a reduced expression of $w_{1} w_{2}$ by Lemma A. So, by the definition of R_{-} polynomials and the fact that $\left(T_{\left(w_{1} w_{2}\right)^{-1}}\right)^{-1}=$ $\left(T_{w_{1}^{-1}}\right)^{-1}\left(T_{w_{2}^{-1}}\right)^{-1}$, we have

$$
\begin{aligned}
& \sum_{x \leq w_{1} w_{2}}(-1)^{l\left(w_{1} w_{2}\right)-l(x)} R_{x, w_{1} w_{2}}(q) T_{x} \\
& =\sum_{x_{1}^{\prime} \leq w_{1}}(-1)^{l\left(w_{1}\right)-l\left(x_{1}^{\prime}\right)} R_{x_{1}^{\prime}, w_{1}}(q) T_{x_{1}^{\prime}} \\
& =\sum_{x_{x_{2}^{\prime} \leq w_{2}}(-1)^{l\left(w_{2}\right)-l\left(x_{2}^{\prime}\right)} R_{x_{2}^{\prime}, w_{2}}(q) T_{x_{2}^{\prime}}}^{\sum_{w_{1}, x_{2}^{\prime} \leq w_{2}}(-1)^{l\left(w_{1} w_{2}\right)-l\left(x_{1}^{\prime} x_{2}^{\prime}\right)}} \quad R_{x_{1}^{\prime}, w_{1}}(q) R_{x_{2}^{\prime}, w_{2}}(q) T_{x_{1}^{\prime} x_{2}^{\prime}} .
\end{aligned}
$$

We suppose that there exist $x_{1}^{\prime} \leq w_{1}$ and $x_{2}^{\prime} \leq w_{2}$ such that $T_{x_{1} x_{2}}=T_{x_{1}^{\prime} x_{2}^{\prime}}$. Then, we have $x_{1} x_{2}=$ $x_{1}^{\prime} x_{2}^{\prime}$. We put $J:=S \backslash G\left(w_{1}\right)$ and then we can easily check that $x_{1}, x_{1}^{\prime} \in W^{J}$ and $x_{2}, x_{2}^{\prime} \in W_{J}$. Hence, by the uniqueness of the coset decomposition, we see that $x_{1}^{\prime}=x_{1}$ and $x_{2}^{\prime}=x_{2}$. So, the coefficient of $T_{x_{1} x_{2}}$ in the right hand side is equal to $(-1)^{l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)} R_{x_{1}, w_{1}}(q) R_{x_{2}, w_{2}}(q)$. Hence, it turns out that

$$
R_{x_{1}, w_{1}}(q) R_{x_{2}, w_{2}}(q)=R_{x_{1} x_{2}, w_{1} w_{2}}(q)
$$

(ii) We will show (ii) by induction on $l\left(w_{1} w_{2}\right)$ $l\left(x_{1} x_{2}\right)$. In case $l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)=0$, then we see that $x_{1} x_{2}=w_{1} w_{2}, x_{1}=w_{1}$ and $x_{2}=w_{2}$. So, we have $P_{x_{1}, w_{1}}(q) P_{x_{2}, w_{2}}(q)=1=P_{x_{1} x_{2}, w_{1} w_{2}}(q)$. We suppose that (ii) is correct up to the case where $l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)=k-1(k \geq 1)$ and we will show (ii) in case $l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)=k$. By Definition-Proposition (Kazhdan-Lusztig polyno-mial)-(iv) and our inductive hypothesis, we have

$$
\begin{aligned}
& q^{l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)} P_{x_{1} x_{2}, w_{1} w_{2}}\left(\frac{1}{q}\right) \\
& =\sum_{x_{1} x_{2} \leq y \leq w_{1}, w_{2}} R_{x_{1} x_{2}, y}(q) P_{y, w_{1} w_{2}}(q) \\
& =\sum_{x_{1} \leq y_{1} \leq w_{1}, x_{2} \leq y_{2} \leq w_{2}} R_{x_{1} x_{2}, y_{1} y_{2}}(q) P_{y_{1}, y_{2}, w_{1} w_{2}}(q) \\
& =\sum_{x_{1}<y_{1} \leq w_{1}, x_{2}<y_{2} \leq w_{2}} R_{x_{1}, v_{1}}(q) R_{x_{2}, v_{2}}(q) \\
& \quad+\sum_{x_{y_{1} \leq u_{1} \leq w_{1}}(q) P_{y_{2}}} R_{x_{1}, v_{1}, w_{2}}(q)+P_{y_{1}, w_{1}}(q) P_{x_{2}, w_{2}}(q)
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\sum_{x_{2}<u_{2} \leq w_{2}} R_{x_{2}, y_{2}}(q) P_{x_{1}, w_{1}}(q) P_{y_{2}, w_{2}}(q) \\
& =q^{l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)}
\end{aligned} P_{x_{1}, w_{1}}\left(\frac{1}{q}\right) P_{x_{2}, w_{2}}\left(\frac{1}{q}\right) .
$$

Hence, we have
$q^{l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)} P_{x_{1} x_{2}, w_{1} w_{2}}\left(\frac{1}{q}\right)-P_{x_{1} x_{2}, w_{1} w_{2}}(q)$
$=q^{l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)} P_{x_{1}, w_{1}}\left(\frac{1}{q}\right) P_{x_{2}, w_{2}}\left(\frac{1}{q}\right)$

$$
-P_{x_{1}, w_{1}}(q) P_{x_{2}, w_{2}}(q)
$$

Note that $\operatorname{deg} P_{x_{1} x_{2}, w_{1} w_{2}}(q) \leq \frac{1}{2}\left(l\left(w_{1} w_{2}\right)-l\left(x_{1} x_{2}\right)\right.$
$-1)$ and $\operatorname{deg} P_{x_{1}, w_{1}}(q)+\operatorname{deg} P_{x_{2}, w_{2}}(q) \leq \frac{1}{2}\left(l\left(w_{1} w_{2}\right)\right.$
$\left.-l\left(x_{1} x_{2}\right)-1\right)$. It follows that

$$
P_{x_{1} x_{2}, w_{1} w_{2}}(q)=P_{x_{1}, w_{1}}(q) P_{x_{2}, w_{2}}(q) .
$$

Thus we have shown (ii) by induction.
By Theorem A, we can easily obtain the following.

Corollary A. Let $S_{1}, S_{2}, \ldots, S_{k}$ be subsets of S satisfying $S_{i} \cap S_{j}=\phi$ for all $i \neq j$ in [k]. Then, we have

$$
\begin{aligned}
& R\left(W_{S_{1}}\right) R\left(W_{S_{2}}\right) \cdots R\left(W_{S_{k}}\right) \subset R(W), \\
& P\left(W_{S_{1}}\right) P\left(W_{S_{2}}\right) \cdots P\left(W_{S_{k}}\right) \subset P(W),
\end{aligned}
$$

where $R(G)$ (resp. $P(G)$) is the set of R-polynomials (resp. Kazhdan-Lusztig polynomials) for a Coxeter group G.

For example, let $W\left(A_{n}\right), W\left(B_{m}\right)$ and $W\left(D_{r}\right)$ be Weyl groups of type A_{n}, B_{m} and D_{r} respectively, then we have
$R\left(W\left(A_{n}\right)\right) R\left(W\left(A_{m}\right)\right) \subset R\left(W\left(A_{n+m}\right)\right)$,
$P\left(W\left(A_{n}\right)\right) P\left(W\left(A_{m}\right)\right) \subset P\left(W\left(A_{n+m}\right)\right)$,
$R\left(W\left(A_{n}\right)\right) R\left(W\left(B_{m}\right)\right) \subset R\left(W\left(B_{n+m}\right)\right)$,
$P\left(W\left(A_{n}\right)\right) P\left(W\left(B_{m}\right)\right) \subset P\left(W\left(B_{n+m}\right)\right)$,
$R\left(W\left(A_{n}\right)\right) R\left(W\left(D_{m}\right)\right) \subset R\left(W\left(D_{n+m}\right)\right)$,
$P\left(W\left(A_{n}\right)\right) P\left(W\left(D_{m}\right)\right) \subset P\left(W\left(D_{n+m}\right)\right)$.

References

[1] N. Bourbaki: Groupes et algèbres de Lie. Ch. 4, 5, et 6, Hermann, Paris (1968).
[2] F. Brenti: Combinatorial properties of the Kazhdan-Lusztig polynomials for S_{n} (to appear in Adv. in Math.).
[3] J. E. Humphreys: Reflection Groups and Coxeter Groups. Cambridge Univ. Press (1990).
[4] D. Kazhdan and G. Lusztig: Representation of Coxeter groups and Hecke algebras. Invent. Math., 53, 165-184 (1979).

