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This is a continuation of my preceding pap-
ers [1], [2], [3], which will be referred to as (I),
(II), (III) in this paper. As in (II), (III), to each tri-
ple (I, m, n) of independent linear forms on
E3, k being a field of characteristic not 2 and k
its algebraic closure, we associate a space
01 T={tek;

(* — m®) (m* — n®) (n® — I°) + 0}.
Since the condition for ¢t € T in (0.1) is given by
a homogeneous polynomial, we can speak of the
subset P(T) of the projective plane
(0.2) P(T) ={[fl € P*(k);
0 — m® m® — nd) " — 1) # 0},

which is the complement of the complete quad-
rangle given by six lines (> — m®) (m® — un®)
(n® — 1) = 0. Since T is the total space of a
bundle whose fibres are (affine parts of) elliptic
curves in Pa(E), it is natural to think of their im-
ages under the canonical map T— P(7) given by
t— [#], the homogeneous coordinates for £ In
this paper, we shall study this aspect of the
space T and show that there is a close relation
between certain family of elliptic curves and a
single plane conic, over a given field k of
rationality. If X denotes a set of geometric ob-
jects, we shall denote by X(K) (or by Xy occa-
sionally) the subset of X which is rational over
K.

§1. Basic diagram. Along with the cano-
nical map P :T— P(T)’ ((0,1), (0,2)), we con-
sider the diagram:

T 5 P
(1.1) pl \'p
Q5 A
where
12) Q={w=WM,N) €kxk;
MN(M — N) # 0},
(1.3) A={€k;21+0,1},
— Z_ 2 2_ 2 _ﬂ
1.4y pWO =W —n"m —n), rw) = e
2 _ 2

ol = 1) = 7

2 *
- n

Since k is algebraically closed, p is surjec-
tive and hence so is p. For an w = (M, N) €
2, P induces naturally a map
(1.6) P,:p () =5 (r(w)).

Again since k is algebraically closed, we see that

P, is surjective and each fibre is of the form

{£ 8, t€ T; in other words, P, is a covering

of degree 2. The fibres of p, p are described as

follows. For an w = (M, N), let

(1.7) E(w) = {[x] € P’(k);

xl+ Mzl = x!, 22 + Nx? = =2},

this being an elliptic curve in P>(k) (see e.g., [4]

Chap. 4). Deleting four 2-torsion points out of

(1.7), we obtain the affine part of (1.7):

(1.8) Eyw) ={(zx,y, 2 €k ;2"+ M=2",
22+ N=y?.

From (1.4), (1.8), we have a bijection

(1.9) p 7 (w) S E,(w), w € Q,

given by t— (I(D), m(®), n(®)), t € p~ (w).

On the other hand, for a A € A, let
(1.10) ¢cQ) =A{lx,y, 21 € p°(k) ;

y'— =1 — 29},
this being a nonsingular conic in p°(k). Denoting
by H the complete quadrangle given by
(1.11) H=A{lzx,y, 2] €p*);

@ =)@ — G -2 =0,
we have
(1.12) C n H={[1,1,11, [—1,1,1],

1, — 1,11, [1,1, — 11}
which is independent of 4 € A.
Deleting these four points from C(4), write
(1.13) Co)) =CQ) — H.
From (1.5), (1.11), (1.12), (1.13), we have a bijec-
tion
(1.14) Q) S C,(
given by [f] = [I(), m(®), n(®)].
In view of (1.6), (1.9), (1.14), we obtain a cover-
ing of degree 2:

(1.15) =, : E,(w) — CO<%>, w=WM,N € Q,

given by (z, v, 2) ~ [z, y, zl.



No. 5]

(1,0,0

§2. Rationality. We shall consider what
will happen to (1.15) if we restrict our attention
to any field k of rationality (of characteristic
# 2). We start with a triple (I, m, #) of inde-
pendent linear forms defined over k and associ-
ate to it the space T defined by (0.1). The dia-
gram (1.1) induces in an obvious way the dia-
gram:

k

(k) = P(D K
pt g

Q) = Ak
For an w € Q2(k), P, induces naturally a map
(2.2) P,.: 0 (@) =5, (r(w).
This map is not necessarily surjective, although
each fibre consists of two points as before. Along
with (1.9), (1.14) and (1.15), we have bijections

(2.1)

2.3) P, Hw) S Eyw) k), o< Q2k),
2.4) QDS C,DWK), 1€ Ak
and a map

(2.5) w,,: Eyw) (k) — Co(%> k), w= (M, N).

For any A € A(k), let
(2.6) 2,k =7, =
{w=W,N) € Qk); N=IM}.
This set is identified with £ by (M, AM) < M
and we denote by 2,(k)/(K*)*(= kK*/(k™)?) a
complete set of representatives of £,(k) under
the action of the group (k*)®. Then we have
(2.7) C,(D) (k) = U Image(r,,,), (disjoint).

weQ;(k)/ (k)2
In fact, (2.5) implies that the right hand side

of (2.7) is contained in the left hand side. Con-
versely, take any point [f] € C,(2) (k), with ¢t €
kK. Then y’—22=2(*>—2. Since [f]l=
[of] for any p € k*, we may assume that z° — 2
=Me k*/(k*)’. Then y*>— 2°=AM. In other
words, t€ Ey(w) (k) with w = (M, AM), which
shows that the left hand side of (2.7) is contained
in the right hand side. Finally take a point [f] €
Im(z,,) N Im(z, ), with o= M, M), o =
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M’, AM") € Q,(k)/(k™)?. Then we have M =
0°(x*— 2, M’ = p*(x” — 2°) for some p, 0 €
k*. Hence o =M’ M) =@’ —2° y*—
2D = @) @ &* =20, o°F—2)) = (/o)
(M, AM) = (0’ /p)’w. Since w, o’ are representa-
tives of 2,(k) mod(k™)? we must have w = ’, so
the union in (2.7) is disjoint, Q.E.D.

Summarizing the arguments, we restate (2.7)
as
(2.8) Theorem. Let k be a field of chacteristic
not 2. Fora A € k, A # 0,1, let C(R) be the plane
conic (1.10) and C,(Q) the portion of it givem by
(1.13). For M € k™ /(K™)?, let E(M, AM) be the
space elliptic curve (1.7) and E,(M, AM) the por-
tion of it given by (1.8). Then we have
CiOW®k) = U PEWM, M) (k) (disjoint),

MeQK*/(k*)?
where P is the canowical map t— [f], t € k* — {0}.
Furthermore each fibre of P (restricted on E,(M,
AM) (k)) consists of two points.

§3. An example. As an illustrative exam-
ple of (2.8) , let us consider the case k = F,, the
finite field with ¢ elements, 2 X q. Since [k™:
(k)*]1 = 2, we choose as M elements 1 and 7, 7
being a generator of the cyclic group k. Let A be
an element of k such that A # 0,1. Let x be the
nontrivial quadratic character of kx, i.e. the
character so ¢ hat x (#) = — 1. Since the conic is
given by the ternary form:

(3.1 CW:ax’—y*+ A —D=0,
we have ([56] p. 145, Th. 2E)
32 #CO(|) =q+1, #CW K =q— 3.

Using character sums, we obtain

(3.3) #E,(Q, (k) =q—3+ S,
S, = Zk x@@x+ 1) (@ + ),
(3.4)  #E,r, (k) =q—3+S,,

S, = 2 x@@+»n@+rd).

ZEL

Since each fibre of P restricted on E (M,
AM) (k) consists of two points, we have, by (2.8),
(3.3), (3.4),

(3.5) q—3=%(q—3+Sl+q—3+S,)
and hence
(3.6) S +S,=0,

a relation which can also be verified directly using
x(=—1. Since #EQ, Dk = #E,Q, D
(k) + 4 and similarly for E(r, A1), we have,
from (3.3), (3.4), (3.6),

(3.7) g+1— #E@, r2)(F)
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= —(@+1— #EQ, D (F).
Therefore, the formula (2.8) may be viewed as a
geometric background for typical relations be-
tween elliptic curves which are quadratic twists
of each other.

References

[1] T.Ono: Triangles and elliptic curves. Proc. Japan
Acad., 70A, 106—108 (1994).

[Vol. 71(A),

[2] T. Ono: Triangles and elliptic curves. II. Proc.
Japan Acad., 70A, 223-225 (1994).

[3] T. Ono: Triangles and elliptic curves. III. Proc.
Japan Acad., 70A, 311—-314 (1994).

[4] T.Ono: Variations on a Theme of Euler. Plenum,
New York (1995).

[5] W. M. Schmidt: Equations over Finite Fields. An
Elementary Approach. LNM 536, Springer, Ber-
lin, Heidelberg, New York (1976).



