Seminear-rings Characterized by their &-Ideals. I

By Javed AHSAN

Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Saudi Arabia (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1995)

1. Introduction and preliminaries. A right seminear-ring is a set R together with two binary operations + and \cdot such that (R, +) and (R, \cdot) are semigroups and for all $a, b, c \in R$: (a + b)c = ac + bc [8, 9]. A natural example of a right seminear-ring is the set M(S) of all mappings on an additively written semigroup S with pointwise addition and composition. A right seminear-ring R is said to have an absorbing zero 0 if a + 0 = 0 + a = a and $a \cdot 0 = 0 \cdot a = 0$ hold for all $a \in R$. Throughout this paper, R will denote a right seminear-ring with an absorbing zero. A seminear-ring homomorphism between seminear-rings R and R' is a map $\phi: R \rightarrow R'$ satisfying $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab)$ $= \phi(a)\phi(b)$ for all $a, b \in R$. An *ideal* of a seminear-ring is the kernel of a seminear-ring homomorphism [7]. Generalizing this definition, we call a subset I of a seminear-ring R a right (left) &-ideal if (i) for all $x, y \in I, x + y \in I$, and (ii) for all $x \in I$ and $r \in R$, $xr(rx) \in I$. The word \mathcal{A} -ideal will always mean a subset of R which is both a left and a right \mathscr{S} -ideal. If R is a unitary near-ring instead of a seminear-ring then \mathscr{S} -ideals of R are just the R-subgroups of R (see [8], p. 14). On the other hand, if R is a unitary ring or more generally, a semiring (in the sense of Golan [6]), then \mathcal{S} -ideals are the ideals of R in the usual sense (see [6], p. 55). An element a of a seminear-ring R is (*left*) distributive if for all $x, y \in R$, a(x + y) = ax + ay; R will be called *distributively generated*, or d.g. for short, if R contains a multiplicative subsemigroup Dof (left) distributive elements which generate (R, +). The notion of d.g. seminear-rings provides a common generalization of distributively generated near-rings (cf. [8]) and general semirings (cf. [6]). Lef S be an additively written semigroup and let E(S) be the set of all finite sums $\sum f_i$, where f_i 's belong to the set of endomorphisms of S. Then E(S) is a subseminearring of M(S) distributively generated by the multiplicative subsemigroup of endomorphisms of S. If A, B, C are three nonempty subsets of a seminear-ring R, then AB(ABC) will denote the set of all finite sums of the form $\sum a_k b_k$ with $a_k \in A$, $b_k \in B$ ($\sum a_k b_k c_k$ with $a_k \in A$, $b_k \in B$, $c_k \in C$). In particular, for each $a \in R$, aR(Ra)will denote the set of all finite sums of the form $\sum ar_k(\sum r_k a)$ with $r_k \in R$. Since R is right distributive, $Ra = \{ra : r \in R\}$. Clearly aR(Ra) is a right (left) \mathcal{S} -ideal of R. The \mathcal{S} -ideal aR(Ra)will be called the principal right (left) &-ideal generated by a. For any subset S of R, $\langle S \rangle$ will denote the \mathscr{S} -ideal generated by S (i.e. the minimal \mathcal{A} -ideal containing S). A seminear-ring R is called right (left) normal if $a \in aR(Ra)$ for each $a \in R$; R is normal if it is both right and left normal. If A and B are \mathscr{S} -ideals of a seminear-ring then the product $AB = \{\sum_{k=1}^{n} a_k b_k:$ $a_k \in A, b_k \in B$ need not admit the structure of an \mathscr{S} -ideal. However, if **R** is a d.g. seminear-ring then an easy calculation shows that AB is an \mathscr{S} -ideal of R. We now define the sum of \mathcal{S} -ideals of a seminear-ring R in the following way. For \mathscr{S} -ideals A, B of R, the sum A + B is defined by the set of all finite sums $\sum x_i$, where each $x_i = (a_i + b_i)$ with $a_i \in A$ and $b_i \in B$. More generally, if $\{A_i : i \in I\}$ is an arbitrary family of \mathscr{S} -ideals of a seminear-ring R, then the sum $\sum_{i \in I} A_i$ is the set of all finite sums $\sum x_i$ where $x_i = \sum_{i \in I} a_{ij}$ such that $a_{ij} \in A_i$ and $a_{ij} =$ 0 for all except finitely many $i \in I$. If R is a d.g. seminear-ring then it is easily verified that for \mathcal{S} -ideals A, B of R, A + B is the unique minimal member of the family of all \mathscr{S} -ideals of R containing both A and B. More generally, if $\{A_i : i \in$ *I*) is a family of \mathscr{S} -ideals, then $\sum_{i \in I} A_i$ is the unique minimal member of the family of all \mathscr{S} -ideals of R containing the \mathscr{S} -ideals $\{A_i: i \in \mathcal{S}\}$ *I*}. Moreover $\bigcap_{i \in I} A_i$ is the unique maximal member of the family of all \mathscr{S} -ideals of R contained in the \mathscr{S} -ideals $\{A_i : i \in I\}$.

A ring R is fully idempotent if each ideal I of

R is idempotent, that is, if $I = I^2$. Several characterizations of these rings were given by Courter [4] and they play an important role in the study of (von Neumann) regular and *V*-rings [5], both of which are proper subclasses of fully idempotent rings. In this paper we initiate the study of a class of seminear-rings which are analogous to fully idempotent rings. We call them *strongly idempotent*, or for short *SI*-seminear-rings. In section 2 we describe a characterization of these seminear-rings. We also discuss some properties of regular seminear-rings (definition follows) which are an important subclass of *SI*-seminear-rings. Below we announce our main results. The details will appear elsewhere.

2. SI and regular seminear-rings. Definition 1. A seminear-ring R will be called strongly idempotent or for short, SI-seminear-ring if for each &-ideal I of R, $I = \langle I^2 \rangle$.

Thus if R is a unitary ring which is SI in the above sense, then R is precisely a fully idempotent ring. The following proposition characterizes SI-seminear-rings.

Proposition 1. The following assertions are equivalent:

(1) R is SI

(2) For each pair of *S*-ideals A, B of R, $A \cap B = \langle AB \rangle$.

(3) S-ideals of R form a semilattice (\mathcal{L}_R, Λ) with $A\Lambda B = \langle AB \rangle$ for each pair of S-ideals A, Bof R.

Extending the definition of a regular nearring ([8], p. 345), a seminear-ring R will be called *regular* if for each $a \in R$, $\exists b \in R$ such that aba = a. The following corollary is an immediate consequence of the above proposition.

Corollary 1. If R is a regular seminear-ring then R is SI with $I = I^2$ for each &-ideal I of R.

The following characterization of regular seminear-rings can be proved by using the usual techniques ([8], p. 345).

Proposition 2. A seminear-ring R is regular if and only if R is normal and each principal left \mathcal{S} -ideal is generated by an idempotent.

Corollary 2. If R is a regular seminear-ring with central idempotents, then R is reduced (that is, having no nonzero nilpotent elements).

Corollary 3. A regular seminear-ring contains no nonzero nil &-ideals (An &-ideal is nil if each of its elements is nilpotent). **Proposition 3.** Let R be a seminear-ring with central idempotents. Then the following assertions are equivalent:

(1) R is regular.

(2) R is normal, each principal right &-ideal $aR = \{ar : r \in R\}$, and for each right &-ideal K and left &-ideal $L, K \cap L = KL$.

Next we construct a class of examples of SI-seminear-rings which are neither regular nor \mathscr{S} -simple (that is, having no nonzero proper \mathscr{S} -ideals). First we outline a procedure for constructing seminear-rings:

Let R be a right near-ring and (S, \cdot) be a semigroup, and let $\phi: (S, \cdot) \to (R, \cdot)$ be a homomorphism. Let $A = S \cup R$. On the set A define the binary operations + and \cdot as follows:

$$r + s = r + \phi(s)$$

$$s + r = \phi(s) + r$$

$$rs = r\phi(s)$$

$$sr = \phi(s)r$$

 $sr = \phi(s)r$ for all $r \in R$, $s \in S$.

Moreover, $r_1 + r_2 = (\text{sum in } R); r_1 \cdot r_2 = (\text{product} \text{ in } R)$ for all $r_1, r_2 \in R; s_1 + s_2 = \phi(s_1) + \phi(s_2)$ and $s_1 \cdot s_2 = (\text{product in } S)$ for all $s_1, s_2 \in S$. It is easily verified that $(A, +, \cdot)$ is a seminear-ring.

Example 1. Let S be a semigroup with identity e, and let C denote the bicyclic semigroup, that is, $C = N_0 \times N_0$, where N_0 is the set of non-negative integers and the multiplication in C is defined by $(m, n)(p, q) = (m + p - \min(n, p), n + p - \min(n, p))$. It is well known (see for example, [3], 1.12) that C is a bisimple inverse monoid with $(m, n)^{-1} = (n, m)$ and identity (0,0). Let $T = C \times S$ with the following multiplication:

((m, n), s)((p, q), t) = ((m, n)(p, q), f(n, p))where f(n, p) = s, t or st according to whether n > p, n < p or n = p. It can be verified that T is a simple semigroup (that is, a semigroup with no proper (semigroup) ideals). Furthermore it can be shown that T is a regular semigroup (that is, $x \in xTx$ for all $x \in T$) if and only if S is regular. Now let $T = C \times S$ where S is a nonregular monoid (for example, $S = (N, \cdot)$) and let $R = \{0,1\}$ be the near-ring defined by the following tables:

+	0	1	•	0	1
	0			0	
1	1	0	1	1	1

Let $\phi: (T, \cdot) \to (R, \cdot)$ be the homomorphism defined by $\phi(t) = 0$ for all $t \in T$. Let $A = T \cup$ R. On the set A, define + and \cdot as described by the above procedure. Then $(A, +, \cdot)$ is a seminear-ring. Now let I be an \mathscr{S} -ideal of A. Then $\{0,1\} \subseteq I$. Suppose $I \neq \{0,1\}$. Then $I \setminus \{0,1\}$ is a semigroup ideal of T. Hence for $b \in T$ and $c \in I \setminus \{0,1\} \subseteq T$, bc and $cb \in$ $I \setminus \{0,1\}$. Since T is a simple semigroup, so T has no proper ideals. Therefore $I \setminus \{0,1\} = T$. Hence $I = T \cup \{0,1\}$. Thus I = A. Now adjoin an element θ to A where $\theta \notin A$ such that $a + \theta = \theta + \theta$ a = a, for all $a \in A \cup \theta$, and $a\theta = \theta a = \theta$, for all $a \in A \cup \theta$. Now put $A \cup \theta = A'$. Then $(A', +, \cdot)$ is a seminear-ring with an absorbing zero θ . Now let I be any \mathscr{A} -ideal of $(A', +, \cdot)$. If $I = \{\theta\}$, then clearly $I = I^2$. Suppose $I \neq \theta$. Then $I \setminus \{\theta\}$ is an \mathscr{S} -ideal of the seminear-ring A. Hence as shown above, $I \setminus \{\theta\} = A$ or $I \setminus \{\theta\}$ $= \{0,1\}$. Thus I = A' or $I = \{\theta\} \cup \{0,1\} =$ $\{0, \theta, 1\}$. Thus in any case, we have $I = I^2$. Hence A' is an SI-seminear-ring. Clearly A' is not regular. Moreover, A' is not \mathscr{S} -simple since $\{0, \theta, 1\}$ is a proper \mathscr{S} -ideal.

Finally we state the following embedding theorem for seminear-rings which may be of independent interest.

Theorem 1. Let R be an arbitrary ring. Then R can be embedded in a regular seminear-ring with an absorbing zero and a multiplicative identity.

Acknowledgement. The author wishes to express his appreciation to the referee for his most valuable comments.

References

- [1] G. Birkhoff: Lattice Theory. AMS Colloq. Publications (1954).
- [2] J. R. Clay: Imbedding an arbitrary ring into a non-trivial near-ring. Amer. Math. Monthly, 74, 406-407 (1967).
- [3] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. Vols. I and II, AMS Surveys (no. 7) (1961/67).
- [4] R. Courter: Rings all of whose factor rings are semi-prime. Canad. Math. Bull., 12, 417-426 (1969).
- [5] J. Fisher: von Neumann regular versus V-rings. Proc. Oklahoma Conf. on Ring Theory, Marcel Dekker, pp. 101-119 (1974).
- [6] J. S. Golan: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science. Pitman Monographs and Surveys in Pure and Applied Mathematies (no. 54), Longman Scientific and Technical Publishers (1992).
- [7] W. G. van Hoorn and B. van Rootoselaar: Fundamental notions in the theory of seminear-rings. Comp. Math., 18, 65-78 (1967).
- [8] G. Pilz: Near-rings. North Holland Publ. Comp. (1983).
- [9] H. J. Weinert: Seminear-rings, seminear-fields and their semigroup theoretical background. Semigroup Forum, 24, 231-254 (1982).