18. Equidimensional Toric Extensions of Symplectic Groups

By Haruhisa NAKAJIMA
Deparment of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, M. J. A., March 14, 1994)

§ 0. G (resp. T) will always stand for a connected reductive complex algebraic group (resp. connected complex algebraic torus). We will use any of the notations $\rho,(\rho, G)$ or (V, G) to denote a finite dimensional representation $\rho: G \rightarrow G L(V)$ over the complex number field \boldsymbol{C} and often confuse ρ with the affine space V. An algebraic action of G on an affine variety X (abbr. (X, G)) is said to be cofree (resp. equidimensional), if $\boldsymbol{C}[X]$ is $\boldsymbol{C}[X]^{G}$-free (resp. if $X \rightarrow X / G$ is equidimensional), where $\boldsymbol{C}[X]$ denotes the affine coordinate ring of X and X / G denotes the algebraic quotient of X. On the other hand, (X, G) is said to be stable, if X contains a non-empty open subset consisting of closed G-orbits. For toric actions, we have proved in [5] the following result, which is fundamental in this paper:

Theorem 0.1 ([5]). Let X be an affine conical factorial variety with an algebraic action of T compatible with the conical structure of X. Let W be a dual of a homogeneous T-submodule of $\boldsymbol{C}[X]$ which minimally generates $\boldsymbol{C}[X]$ as a \boldsymbol{C}-algebra. Then (X, T) is stable and equidimensional if and only if so is $(W$, T). If these conditions are satisfied, then both actions (X, T) and (W, T) are cofree.
V. L. Popov and V. G. Kac conjectured that equidimensional representations are cofree. Concerning their conjecture, we will obtain

Theorem 0.2. Suppose that the commutator subgroup of G is symplectic and of rank ≥ 3. Then finite dimensional equidimensional stable representations of G are cofree.

We denote by G^{\prime} the commutator subgroup of G and say that (V, G) is relatively equidimensional (resp. relatively stable), if $\left(V / G^{\prime}, G / G^{\prime}\right)$ is equidimensional (resp. stable). The purpose of this paper is to show

Theorem 0.3. Under the same circumstances as in (0.2), suppose that the natural action of $Z(G)^{0}$ on $V / V^{G^{\prime}}$ is nontrivial. If (V, G) is relatively stable and relatively equidimensional, then the restriction of (V, G) to G^{\prime} (i.e., ($(V$, $\left.G), G^{\prime}\right)$) is cofree.

This assertion does not hold, in the case where the semisimple rank of G is ≤ 2 (cf. [4]). Since equidimensional (resp. stable) representations are relatively equidimensional (resp. relatively stable), (0.2) follows from this and the classification [1] obtained by O. M. Adamovich and G. W. Schwarz. Some (calculative) parts of our proofs are left to the readers. The related study on

[^0]other simple groups shall be published in a forthcoming paper.
§1. Let $\mathfrak{X}(T)$ denote the rational linear character group of T over \boldsymbol{C} and we regard this group as an additive group. A sequence $\left(\chi_{1}, \ldots, \chi_{m}\right)$ in $\mathfrak{X}(T)$ is said to be uniquely and positively related (abbr. $U P R$), if $\mathrm{rk}\left\langle\chi_{1}, \ldots\right.$, $\left.\chi_{m}\right\rangle=m-1$ and $\sum_{i=1}^{m} a_{i} \chi_{i}=0$ for some $0<a_{i} \in \boldsymbol{Q}$. In general a sequence $\left(\psi_{1}, \ldots, \psi_{s}\right)$ in $\mathfrak{X}(T)$ is said to be stably equidimensional (abbr. SEQ), if $\sum_{i=1}^{u}\left\langle\psi_{\sigma\left(s_{t-1}+1\right)}, \ldots, \psi_{\sigma\left(s_{t}\right)}\right\rangle=\bigoplus_{i=1}^{u}\left\langle\psi_{\sigma\left(s_{t-1}+1\right)}, \ldots, \psi_{\sigma\left(s_{t}\right)}\right\rangle$ and $\left(\psi_{\sigma\left(s_{i-1}+1\right)}, \ldots, \psi_{\sigma\left(s_{i}\right)}\right)(1 \leq i \leq u)$ are UPR, for some permutation σ of $\{1, \ldots$, $s\}, 0 \leq u \in \boldsymbol{Z}$ and $0 \leq s_{i} \in \boldsymbol{Z}(1 \leq i \leq u)$ such that $0=s_{0}<s_{1}<\cdots$ $<s_{u}=m$. For any $a_{i} \in \boldsymbol{N},\left(a_{1} \psi_{1}, \ldots, a_{s} \psi_{s}\right)$ is SEQ if and only if so is $\left(\psi_{1}, \ldots\right.$, ψ_{s}).

Lemma 1.1. Let $\delta_{i}(0 \leq i \leq 3)$ be linear characters of T.
(1) If $\left(\delta_{1}, \delta_{2}, \delta_{1}+\delta_{2}\right)$ is a subsequence of a SEQ sequence, then $\delta_{1}+\delta_{2}$ $=0$.
(2) Suppose that $\delta_{0} \neq 0$. Then $\left(\delta_{0}, \delta_{1}+\delta_{2}, \delta_{0}+\delta_{1}, 2 \delta_{0}+\delta_{1}+\delta_{2}, \delta_{0}\right.$ $+\delta_{2}$) is a subsequence of a SEQ sequence if and only if $-\delta_{0}=\delta_{1}=\delta_{2}$ or $2 \delta_{0}$ $+\delta_{1}+\delta_{2}=0$ and $\mathrm{rk}\left\langle\delta_{1}, \delta_{2}\right\rangle=2$.
(3) Let $\left(a_{i j}\right) \in G L_{2}(\boldsymbol{Q})$ such that $a_{11}, a_{21} \geq 0$. If ($\delta_{1}, \delta_{2}, a_{11} \delta_{1}+a_{12} \delta_{2}$, $a_{21} \delta_{1}+a_{22} \delta_{2}$) is a subsequence of a SEQ sequence, then $\delta_{1}=\delta_{2}=0$.
(4) Suppose that $\delta_{i} \neq 0(0 \leq i \leq 3)$. Then $\left(\delta_{0}+\delta_{1}, \delta_{0}+\delta_{2}, \delta_{0}+\delta_{3}\right.$, $\delta_{1}+\delta_{2}, \delta_{1}+\delta_{3}, \delta_{2}+\delta_{3}$) is a subsequence of a SEQ sequence if and only if $\mathrm{rk}\left\langle\delta_{1}, \delta_{2}, \delta_{3}\right\rangle=3$ and $\delta_{0}=\delta_{1}+\delta_{2}+\delta_{3}$ or, up to a replacement of indices of $\delta_{i}, \mathrm{rk}\left\langle\delta_{0}, \delta_{1}\right\rangle=2, \delta_{2}=-\delta_{0}$ and $\delta_{3}=-\delta_{1}$.

We may assume that $G=G^{\prime} \times T$ and T acts faithfully on the representation space V of G. A representation $\left(V, G^{\prime} \times T\right)$ is said to be irredundant along trivial parts (resp. relatively irredundant along trivial parts), if T acts nontrivially on V (resp. V / G^{\prime}) and, for any nonzero subspace U of $V^{G^{\prime}}$, $T \neq\left(\cap_{y \in V / U} T_{y}\right) \times\left(\cap_{y \in U} T_{y}\right)$ (resp. $\left.T\right|_{V / G^{\prime}} \neq\left(\cap_{z \in(V / U) / G^{\prime}}\left(\left.T\right|_{V / G^{\prime}}\right)_{z}\right) \times\left(\cap_{z \in U}\right.$ $\left.\left(\left.T\right|_{V / G^{\prime}}\right)_{z}\right)$).

Lemma 1.2. Suppose that $\operatorname{Ker}\left(\left.T\right|_{V / V^{G^{\prime}}} \rightarrow \operatorname{Aut}\left(\left(V / V^{G^{\prime}}\right) / G^{\prime}\right)\right)^{0}$ is trivial. Then (V, G) is irredundant along trivial parts if and only if it is relatively irredundant along trivial parts.

Since V / G^{\prime} is a conical factorial variety with an action of the torus $G / G^{\prime} \cong T$, by (0.1), we have the following two results:

Proposition 1.3. Let $\chi_{i} \in \mathfrak{X}(T)$ to satisfy $\left(V^{G^{\prime}}, T\right)=\chi_{1} \oplus \cdots \oplus \chi_{s}$ for some $0 \leq s \in \boldsymbol{Z}$ and let $\psi_{i} \in \mathfrak{X}(T)$ such that $\psi_{1} \oplus \cdots \oplus \phi_{m}$ is isomorphic to a homogeneous T-submodule minimally generating $\boldsymbol{C}\left[V / V^{G^{\prime}}\right]^{G^{\prime}}$ for some $0 \leq m \in \boldsymbol{Z}$. Then (V, G) is relatively equidimensional, relatively stable and relatively irredundant along trivial parts if and only if $\left\{\psi_{i} \mid \psi_{i} \neq 0,1 \leq i\right.$ $\leq m\} \neq \emptyset,\left(\psi_{1}, \ldots, \psi_{m}, \chi_{1}, \ldots, \chi_{s}\right)$ is $S E Q$ and any nontrivial subsequence of $\left(\chi_{1}, \ldots, \chi_{s}\right)$ is not UPR.

Lemma 1.4. Let $\varrho \subseteq V / V^{T}$ be an irreducible subrepresentation of G. If (V, G) is relatively stable and relatively equidimensional, then $\mathrm{emb}\left(\boldsymbol{C}\left[V^{T} \oplus \varrho\right]^{G^{\prime}}\right) \leq \mathrm{emb}\left(\boldsymbol{C}\left[V^{T}\right]^{G^{\prime}}\right)+1$.
Lemma 1.5. Let ϱ be a nontrivial irreducible representation and φ a repre-
sentation of G^{\prime}. Suppose that $\operatorname{emb}\left(\boldsymbol{C}[\varphi \oplus \varrho]^{G^{\prime}}\right) \leq \mathrm{emb}\left(\boldsymbol{C}[\varphi]^{G^{\prime}}\right)+1$.
(1) $\operatorname{dim} \boldsymbol{C}[\varrho]^{H} \leq 1$ for an isotropy subgroup H of G^{\prime} at a G^{\prime}-semisimple point of φ.
(2) Suppose that G^{\prime} is simple and φ is irreducible (may be trivial). Then $\left(\varphi \oplus \varrho, G^{\prime}\right)$ is coregular.

Proof. From the inequality and the slice étale theorem, we infer that $\operatorname{dim}\left(\boldsymbol{C}\left[\varphi_{x} \oplus \varrho\right]^{H}\right)=\operatorname{dim}\left(\boldsymbol{C}[\varphi \oplus \varrho]^{G^{\prime}}\right) \leq \operatorname{dim}\left(\boldsymbol{C}[\varphi]^{G^{\prime}}\right)+1=\operatorname{dim}\left(\boldsymbol{C}\left[\varphi_{x}\right]^{H}\right)$ +1 , where $x \in \varphi$ such that $G^{\prime} x$ is a closed orbit with $G_{x}=H$ and $\left(\varphi_{x}, H\right)$ denotes the slice representation of $\left(\varphi, G^{\prime}\right)$ at x. Thus (1) follows. For (2), applying (1) and Popov's criterion on stability, we see that an isotropy group at a general position of $\left(\varphi, G^{\prime}\right)$ is of dimension ≥ 1. Since G^{\prime} is simple, φ is coregular (e.g. [3, 2, 6]) and so we get the assertion. Q.E.D.
§2. We suppose that G^{\prime} is a connected simply-connected simple algebraic group of type $\mathbf{C}_{n}(n \geq 3)$. Let Φ_{1} be the natural representation of G^{\prime} of degree $2 n$ and $\Phi_{i}, i \leq n$, denote the highest irreducible representation of the i-th exterior power of Φ_{1}. The tensor product of representations (ρ, G^{\prime}) and $\chi \in \mathfrak{X}(T)$ is denoted by $\left(\rho \cdot \chi, G^{\prime} \times T\right)$ and both ρ and χ are naturally regarded as representations of G.

Proposition 2.1. Suppose that $n=3$ and V contains Φ_{3} as a G^{\prime}-module. Then $\left(V, G^{\prime} \times T\right)$ is relatively irredundant along trivial parts, relatively stable and relatively equidimensional if and only if it is equivalent to one of the representations listed in Table I.

$$
\text { Table I }\left(\left(V, \mathbf{C}_{3} \times T\right), \mathbf{C}_{3}\right) \supseteq \Phi_{3}
$$

	$\mathbf{C}_{3} \times T$	condition
1	$\Phi_{3} \oplus \Phi_{1} \cdot \psi \oplus \Phi_{1} \cdot(-\psi)$	
2	$\Phi_{3} \oplus \Phi_{1} \cdot \psi \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(2 \psi, \chi_{1}, \ldots, \chi_{s}\right)$ UPR
3	$\Phi_{3} \cdot \delta \oplus 2 \Phi_{1} \cdot(-\delta)$	
4	$\Phi_{3} \cdot \delta \oplus \Phi_{1} \cdot \psi_{1} \oplus \Phi_{1} \cdot \psi_{2}$	$\mathrm{rk}\left\langle\psi_{1}, \psi_{2}\right\rangle=2,2 \delta=-\psi_{1}-\psi_{2}$
5	$\Phi_{3} \cdot \delta \oplus \Phi_{1} \cdot \psi$	$\delta=a \cdot \psi,-1\rangle a \in \boldsymbol{Q}$
6	$\Phi_{3} \cdot \delta \oplus \Phi_{1} \cdot(-\delta) \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(\delta, \chi_{1}, \ldots, \chi_{s}\right) \mathrm{UPR}$
7	$\Phi_{3} \cdot \delta \oplus \Phi_{1} \cdot \psi \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(\delta, \delta+\psi, \chi_{1}, \ldots, \chi_{s}\right) \mathrm{UPR}$
8	$\Phi_{3} \cdot \delta \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(\delta, \chi_{1}, \ldots, \chi_{s}\right) \mathrm{UPR}$
	Comment: $0 \neq \delta, \psi, \psi_{i}, \chi_{j} \in \mathfrak{X}(T) ; s \geq 1$	

Proposition 2.2. Let $0 \leq u \in \boldsymbol{Z}$. Let $\psi_{i}(1 \leq i \leq m, 0 \leq m \in \boldsymbol{Z})$ and $\chi_{j}(1 \leq j \leq s, 0 \leq s \in \boldsymbol{Z})$ be nonzero linear characters of T. Then a representation $\left(V, G^{\prime} \times T\right)=u \Phi_{1} \oplus \Phi_{1} \cdot \psi_{1} \oplus \cdots \oplus \Phi_{1} \cdot \psi_{m} \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$ is relatively irredundant along trivial parts, relatively stable and relatively equidimensional if and only if one of the conditions listed in Table II holds.

Theorem 2.3. ($V, G^{\prime} \times T$) is relatively irredundant along trivial parts, relatively stable and relatively equidimensional if and only if it is equivalent to one of the representations listed in Tables I and II.

Theorem 2.4. Suppose that a representation $\left(V, G^{\prime} \times T\right)$ is irredundant along trivial parts. Then $\left(V, G^{\prime} \times T\right)$ is relatively stable and relatively equidimensional if and only if it is equivalent to one of the representations listed
in Tables I-III.
In this theorem, we can drop the assumption on "irredundancy", although the condition on linear characters may be more complicated.

$$
\text { Table II } u \Phi_{1} \oplus \Phi_{1} \cdot \psi_{1} \oplus \cdots \oplus \Phi_{1} \cdot \psi_{m} \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}
$$

Table III $\operatorname{Ker}\left(\left.T\right|_{V / V_{n}} \rightarrow \operatorname{Aut}\left(\left(V / V^{\mathbf{C}_{n}}\right) / \mathbf{C}_{n}\right)\right)^{0} \neq\{1\}$

	$\mathbf{C}_{n} \times T$	condition
1	$\Phi_{1} \cdot \psi \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(\chi_{1}, \ldots, \chi_{s}\right) \mathrm{SEQ}$
2	$\Phi_{1} \cdot \psi_{1} \oplus \Phi_{1} \cdot \psi_{2} \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(\psi_{1}+\phi_{2}, \chi_{1}, \ldots, \chi_{s}\right) \mathrm{SEQ}$
3	$\Phi_{1} \cdot \psi \oplus \Phi_{1} \cdot(-\psi) \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(\chi_{1}, \ldots, \chi_{s}\right) \mathrm{SEQ}$
4	$\Phi_{1} \cdot \psi \oplus \Phi_{2} \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(\chi_{1}, \ldots, \chi_{s}\right) \mathrm{SEQ}$
5	$\Phi_{2} \oplus \Phi_{1} \cdot \psi \oplus \Phi_{1} \cdot(-\psi) \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$	$\left(\chi_{1}, \ldots, \chi_{s}\right) \mathrm{SEQ}$
	Comment: $0 \neq \psi, \psi_{i}, \chi_{j} \in \mathfrak{X}(T) ; \mathrm{rk}\left\langle\psi_{1}, \psi_{2}\right\rangle=2 ; s \geq 0$	

$\S 3$. This section is devoted to the proof of the results in $\S 2$. By (1.5.2) and [2,6], we get

Lemma 3.1. Let ϱ be a nontrivial irreducible representation of G^{\prime} and φ a representation of G^{\prime} without nonzero trivial subrepresentations. Then $\boldsymbol{C}[\varphi \oplus \varrho]^{G^{\prime}}$ $=\boldsymbol{C}[\varphi]^{G^{\prime}}$ if and only if $\varrho=\Phi_{1}$ and $\varphi=0$ or Φ_{2}.

Proposition 3.2. Suppose that T is nontrivial. Then the natural action $\left(V / G^{\prime}, T\right)$ is trivial if and only if $\left(V / V^{G}, G\right)$ is equivalent to one of the representations listed in Table III deleting " 2 " with the extra condition that $s=0$.

Proof. We see that $V^{G^{\prime}}=0$ and may express (V, G) as $\varphi_{1} \oplus \cdots \oplus$ $\varphi_{u} \oplus \varrho_{1} \cdot \psi_{1} \oplus \cdots \oplus \varrho_{m} \cdot \psi_{m}$ for some nontrivial irreducible representations φ_{i}, ϱ_{j} of G^{\prime}, nonzero $\psi_{j} \in \mathfrak{X}(T), 0 \leq u \in \boldsymbol{Z}$ and $m \in \boldsymbol{N}$. Since $\left(V / G^{\prime}\right.$, T) is trivial, from (3.1), one infers that $u=1$ and $\varphi_{1} \cong \Phi_{2}$ if $u>0$ and that $\varrho_{j} \cong \Phi_{1}$. By the first main theorem in invariant theory due to H. Weyl, we see that $\boldsymbol{C}\left[\bigoplus_{j=1}^{m} \Phi_{1}\right]^{G^{\prime}}$ is minimally generated by nonzero homogeneous invariants in the subrepresentations which are isomorphic to $\Phi_{1} \otimes \Phi_{1} \subseteq \boldsymbol{C}\left[\Phi_{1}\right.$ $\left.\oplus \Phi_{1}\right]$. By (1.1.1), we see that $\psi_{j}+\psi_{k}=0$ for any $j \neq k$. Thus $m \leq 2$, and hence $\boldsymbol{C}[V]^{G^{\prime}}$ is known. The remainder of the assertion follows from the datum on their fundamental invariants.
Q.E.D.

For a representation (V, G) in Tables I-III, by [2, 6, 7], we see that $\left((V, G), G^{\prime}\right)$ is cofree, and $\boldsymbol{C}[V]^{G^{\prime}}$ can be determined. We can show that it is relatively equidimensional and relatively stable, and from (1.3) we derive that (V, G) listed in Tables I and II is relatively irredundant along trivial parts. The "only if" part of (2.4) follows from (0.1), (1.2), (2.3) and (3.2), because, for any (V, G) in (3.2), $\boldsymbol{C}[V]^{G^{\prime}}$ is a polynomial ring. Hereafter we assume that (V, G) is irredundant along trivial parts, relatively stable and relatively equidimensional. Note $\left(V / V^{T}\right)^{G^{\prime}} \neq V / V^{T}$ (and $\left(V / V^{G^{\prime}}\right)^{T} \neq V / V^{G^{\prime}}$).

Lemma 3.3. Any nontrivial irreducible subrepresentation of $\left(V^{T}, G^{\prime}\right)$ is equivalent to one of Φ_{1}, Φ_{2} and $\left(\Phi_{3}, \mathbf{C}_{3}\right)$. Conversely if $\left(V^{T}, G^{\prime}\right) \supseteq a \Phi_{2} \oplus b \Phi_{3}$ ($0 \leq a, b \in \boldsymbol{Z}$), then $a+b \leq 1$.

Proof. Since unimodular toric actions are stable, from (1.4) and (1.5.1), we infer that any nontrivial subrepresentation of (V^{T}, G^{\prime}) does not have a principal closed isotropy subgroup whose identity component is a torus. Thus the first assertion follows from [3]. By the additivity of indices, the second assertion is also a consequence of the above remark, because indices of $\Phi_{2} \oplus \Phi_{3}, 2 \Phi_{3}, 2 \Phi_{2}(n \geq 4)$ are strictly greater than 1 (cf. [3]) and the identity component of a principal closed isotropy subgroup of $\left(2 \Phi_{2}, \mathbf{C}_{3}\right)$ is a torus of rank one.
Q.E.D.

Lemma 3.4. Any nontrivial irreducible subrepresentation ϱ of $\left(V / V^{T}\right.$, $\left.G^{\prime}\right)$ is equivalent to Φ_{1} or $\left(\Phi_{3}, \mathbf{C}_{3}\right)$. Conversely if $\left(V / V^{T}, G^{\prime}\right) \supset \Phi_{3}$, then $((V$, $\left.G), G^{\prime}\right) \nsupseteq 2 \Phi_{3}$ and $\left(V / V^{T}, G^{\prime}\right) \cong \Phi_{3} \oplus d \Phi_{1}$ for some $0 \leq d \in \boldsymbol{Z}$.

Proof. The first assertion follows from the inequality $\operatorname{dim}\left(\boldsymbol{C}[\varrho]^{G^{\prime}}\right) \leq 1$ (cf. (1.5.1)) and $[2,6]$. Since $\boldsymbol{C}\left[2 \Phi_{3}\right]^{\mathbf{C}_{3}}$ is generated by \boldsymbol{Z}^{2}-homogeneous polynomials of degrees $(4,0),(3,1),(1,3)$ and $(0,4)$, by (1.1.3), we see that $\left((V, G), G^{\prime}\right) \nsupseteq 2 \Phi_{3}$.
Q.E.D.

Proof of (2.1). Suppose that (V, G) is relatively irredundant along trivial parts. First, we show the assertion in the case where $V \supseteq \Phi_{3} \cdot \delta$ for a nonzero $\delta \in \mathfrak{X}(T)$. Then, since $\left(\Phi_{2} \oplus \Phi_{3}, G^{\prime}\right)$ is not coregular (cf. [2, 6]), by (1.4), (1.5.2) and the second assertion of (3.4), we see that (V, G), G^{\prime}) = $\Phi_{3} \oplus d \Phi_{1} \quad$ for \quad some $\quad 0 \leq d \in \boldsymbol{Z} . \boldsymbol{C}\left[\Phi_{3} \oplus \Phi_{1} \oplus \Phi_{1}\right]^{G^{\prime}} \quad$ is generated by \boldsymbol{Z}^{3}-homogeneous polynomials of degrees (4,0,0), ($0,1,1$), ($2,2,0$), ($2,1,1$) and $(2,0,2)$. Suppose $\left((V, G), G^{\prime}\right) \supseteq \Phi_{1} \cdot \psi_{1} \oplus \Phi_{1} \cdot \psi_{2} \oplus \Phi_{1} \cdot \psi_{3}$ for $\psi_{i} \in \mathfrak{X}(T)$. By (1.1.2.), we see that $2 \delta=-\psi_{1}-\psi_{2}=-\psi_{1}-\psi_{3}=-\psi_{2}-\psi_{3}$ and so $-\delta=\psi_{1}=\psi_{2}=\psi_{3}=0$, because $\left(\Phi_{1} \otimes \Phi_{1}\right)^{G^{\prime}} \neq 0$. This is a contradiction and so $d \leq 2$. If $d=2$, then, by (1.1.2), we see that (V, G) is equivalent to " 3 " or " 4 " in Table I. For $d \leq 1$, the assertion follows from (1.3).

Next suppose that $\left(\left(V / V^{T}, G\right), G^{\prime}\right) \nsupseteq \Phi_{3}$. Then, by the second assertion of (3.4), we see that $\left(\left(V / V^{T}\right) /\left(V / V^{T}\right)^{G^{\prime}}, G^{\prime}\right)=d \Phi_{1}$ for some $d \in \boldsymbol{N}$. If $V^{T} \supseteq \Phi_{3} \oplus \Phi_{1}$, then emb $\left(\boldsymbol{C}\left[V^{T} \oplus \Phi_{1}\right]^{G^{\prime}}\right) \geq \mathrm{emb}\left(\boldsymbol{C}\left[V^{T}\right]^{G^{\prime}}\right)+3$. Thus, by (1.4) and (3.3), we have $V^{T}=\Phi_{3}$. Suppose that $V / V^{T} \supseteq \Phi_{1} \cdot \psi_{1} \oplus \Phi_{1} \cdot \psi_{2} \oplus$ $\Phi_{1} \cdot \psi_{3}$ for $\psi_{i} \in \mathfrak{X}(T)$. Then, applying (1.1.1) to the subalgebras isomorphic to $\boldsymbol{C}\left[\Phi_{3} \oplus \Phi_{1} \oplus \Phi_{1}\right]^{G^{\prime}}$, we see that $\psi_{1}+\psi_{2}=\psi_{2}+\psi_{3}=\psi_{3}+\psi_{1}=0$, which implies $\psi_{i}=0$. Thus $d=1$ or 2 and, especially in case of $d=2$, $V=\Phi_{3} \oplus \Phi_{1} \cdot \psi \oplus \Phi_{1} \cdot(-\psi) \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$ for some nonzero $\psi, \chi_{j} \in$
$\mathfrak{X}(T)$. The remainder of the assertion follows from (1.3).
Q.E.D.

Proof of (2.2). Suppose that (V, G) is relatively irredundant along trivial parts. Clearly $m>0$. As in the proof of (3.2), we see that $u \leq 1$ and, moreover, that $\phi_{i}+\phi_{j}=0(i \neq j)$ unless $u=0$. Thus, in the case where $u>0$, we infer that $u=1$ and $m=1$ or 2 , and, by (1.3), that (V, G) is equivalent to " 1 " or " 7 " in Table II.

Next we treat the case where $u=0$. Assume that $m \leq 5$. Then, by (1.3), the equivalent conditions of (1.1.4) are satisfied for $\left(\delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}\right)=$ $\left(\psi_{4}, \psi_{1}, \psi_{2}, \psi_{3}\right)$ and $\left(\psi_{5}, \psi_{1}, \psi_{2}, \psi_{3}\right)$ respectively. Suppose that $\mathrm{rk}\left\langle\psi_{1}, \psi_{2}\right.$, $\left.\psi_{3}\right\rangle=3$. Then $\psi_{1}+\psi_{2}+\psi_{3}+\psi_{4}=\psi_{1}+\psi_{2}+\psi_{3}+\psi_{5}=0$, which implies $\psi_{4}=\phi_{5}$. Thus there are two distinct homogeneous semiinvariants of G relative to $\phi_{1}+\psi_{4}=\phi_{1}+\psi_{5}$ in a minimal generating system of $\boldsymbol{C}[V]^{G^{\prime}}$, which contradicts (1.3). We may assume that $\mathrm{rk}\left\langle\psi_{4}, \phi_{1}\right\rangle=2, \phi_{2}=-\psi_{4}$ and $\psi_{3}=-\psi_{1}$. Since rk $\left\langle\phi_{1}, \phi_{2}, \phi_{3}\right\rangle=2$, we see that $\psi_{5}=-\phi_{1},-\psi_{2}$ or $-\phi_{3}$. Say $\psi_{5}=-\phi_{1}$. Then $\psi_{5}=\phi_{3}$, and hence, as in the above case, we similarly get a contradicition. Consequently $m \leq 4$, and $\left((V, G), G^{\prime}\right)$ is cofree (cf. [7]). Using (1.3), we can show the remainder of the assertion. Q.E.D.

Lemma 3.5. Suppose $\left((V, G), G^{\prime}\right) \supseteq \Phi_{2}$. Then (V, G) is equivalent to "4" or " 5 " in Table III and is relatively redundant along trivial parts.

Proof. From (3.3), one sees that $V^{T}=\Phi_{2} \oplus d \Phi_{1}$ and, from (2.1), that $\left(V / V^{T}, G^{\prime}\right)=c \Phi_{1}$, for some $0 \leq d \in \boldsymbol{Z}$ and $c \in \boldsymbol{N}$. Since $\Phi_{1} \otimes \Phi_{1} \supseteq \Phi_{2} \cong$ Φ_{2}^{*} and the free $\boldsymbol{C}\left[\Phi_{2}\right]^{G^{\prime}}$-module $\boldsymbol{C}\left[\Phi_{2}\right]$ is of rank $n-1$ (cf. [7]), by (1.4), we deduce that $d=0$ and, by (0.1), see that $\psi_{1}+\psi_{2}=0$, if $V \supseteq \Phi_{1} \cdot \psi_{1} \oplus$ $\Phi_{1} \cdot \psi_{2}$ for nonzero $\psi_{i} \in \mathfrak{X}(T)$. This implies that (V, G) is equivalent to Φ_{2} $\oplus \Phi_{1} \cdot \psi \oplus \Phi_{1} \cdot(-\psi) \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$ or $\Phi_{2} \oplus \Phi_{1} \cdot \psi \oplus \chi_{1} \oplus \cdots \oplus \chi_{s}$ for some $0 \leq s \in \boldsymbol{Z}$ and nonzero $\psi, \chi_{i} \in \mathfrak{X}(T)$. In both cases, T acts trivially on $\boldsymbol{C}\left[V / V^{G^{\prime}}\right]^{G^{\prime}}$, and, by (0.1), we see that $\left(\chi_{1}, \ldots, \chi_{s}\right)$ is SEQ. Q.E.D.

By (3.5) and the first assertions of (3.3) and (3.4), we see that (2.3) is a consequence of (2.1) and (2.2). The main result (0.3) follows from (2.4) and [7].

References

[1] O. M. Adamovich: Equidimensional representations of simple algebraic groups. Amer. Math. Soc. Transl. Ser. 2, 128, 25-29 (1986).
[2] O. M. Adamovich and E. O. Golovina: Simple linear Lie groups having a free algebra of invariants. Selecta Math. Soviet., 3, 183-220 (1983/1984).
[3] E. M. Andreev, E. B. Vinberg and A. G. Elashvili: Orbits of greatest dimensionality of semisimple linear Lie groups. Functional Anal. Appl., 1, 257-261 (1967).
[4] H. Nakajima: Cofree representations of $G L(2)$. Hiyoshi Review of Nat. Sci. Keio Univ., 13, 7-13 (1993).
[5] -: Equidimensional actions of algebraic tori (preprint) (1993).
[6] G. W. Schwarz: Representations of simple Lie groups with regular rings of invariants. Invent. Math., 49, 167-191 (1978).
[7] -: Representations of simple Lie groups with a free module of covariants. ibid, 50, 1-12 (1978).

[^0]: The author would like to express his gratitude to Keio Gijyuku for offering him an annual grant from April 1993 to March 1994.

