11. Higher Specht Polynomials for the Symmetric Group

By Tomohide Terasoma and Hirofumi Yamada
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi IyAnAGA, M. J. A., Feb. 12, 1993)

§0. Introduction. We are concerning with constructing a basis of the S_{n}-module $H=\boldsymbol{Q}\left[x_{1}, \ldots, x_{n}\right] /\left(e_{1}, \ldots, e_{n}\right)$, where $\left(e_{1}, \ldots, e_{n}\right)$ denotes the ideal generated by elementary symmetric polynomials $e_{j}=e_{j}\left(x_{1}, \ldots, x_{n}\right)$ for $j=1, \ldots, n$.

Let $P=\boldsymbol{Q}\left[x_{1}, \ldots, x_{n}\right]$ be the algebra of polynomials of n variables x_{1}, \ldots, x_{n} with rational coefficients, on which the symmetric group S_{n} acts by the permutation of the variables:

$$
(\sigma f)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \quad\left(\sigma \in S_{n}\right)
$$

Let us denote by Λ the subalgebra of P consisting of the symmetric polynomials. Let $e_{j}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} x_{i_{1}} \ldots x_{i_{j}}$, be the elementary symmetric polynomial of degree j and put $J_{+}=\left(e_{1}, \ldots, e_{n}\right)$, an ideal generated by e_{1}, \ldots, e_{n}. The quotient algebra $H=P / J_{+}$has a structure of an S_{n}-module. It is well known that the S_{n}-module H is isomorphic to the regular representation. In other words, every irreducible representation of S_{n} occurs in H with multiplicity equal to its dimension. We will give a combinatorial procedure to obtain a basis of each irreducible component of H.

For a Young diagram λ of n cells, one can construct an S_{n}-module $V(\lambda)$ as follows (cf. [5]). For a tableau T of shape λ put

$$
\Delta_{T}=\prod_{\beta \geq 1} \Delta_{T}(\beta) \in P
$$

where $\Delta_{T}(\beta)$ is the product of differences $x_{i}-x_{j}$ for the pair $\{(i, j) ; i<j\}$ appearing in the β-th column in T. The polynomial Δ_{T} is called the Specht polynomial of T. The space $V(\lambda)$ spanned by all the Specht polynomials Δ_{T} for tableaux T of shape λ is naturally equipped with a structure of an S_{n}-module. It is well known that $V(\lambda)$ is irreducible for any Young diagram λ and has a basis $\left\{\Delta_{T} ; T\right.$ is a standard tableau of shape $\left.\lambda\right\}$.

Our basis of H is parametrized by the pair of standard tableaux (S, T) of the same shape and turns out to be a natural generalization of these standard Specht polynomials. One finds a related topic in [1].
§1. Standard tableaux and their indices. Fix a Young diagram $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)\left(\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right)$ consisting of n cells. We often say that λ is a partition of n and write $\lambda \vdash n$. The set of tableaux (resp. standard tableaux) of shape λ is denoted by $\operatorname{Tab}(\lambda)$ (resp. $S T a b(\lambda)$) (cf. [5]). For a standard tableau S of shape λ, one can associate the index tableau $i(S)$ of the same shape in the following manner (cf. [2]). Define the word $w(S)$ by reading S from the bottom to the top in consecutive columns, starting from the left. The number 1 in the word $w(S)$ has index 0 . If the number k in the word has index p, then $k+1$ has index p or $p+1$ according as it lies to
the right or the left of k. The charge $c(S)$ of S is defined to be the sum of the indices. For example, if $S=\begin{array}{cc}1 & 2 \\ 3 & 5\end{array}$, then $w(S)=3_{1} 1_{0} 5_{2} 2_{0} 4_{1}$ where the indices are attached as the subscript. Filling the index in corresponding cell of the given tableau S, we obtain the index tableau $i(S)$ of S. Note that one can recover S by knowing $i(S)$. Let S be a standard tableau and T a tableau of the same shape λ, and let $c(\alpha, \beta)$ be the number in the (α, β)-cell of T. Put $x_{T}^{i(S)}=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$. Here i_{k} is the index in the (α, β)-cell of $i(S)$ where $k=c(\alpha, \beta)$. For example take $S=\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}$ and $T=\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}$, so that $i(S)=\begin{array}{lll}0 & 0 & 1 \\ 1 & 2\end{array}$. Then $x_{T}^{i(S)}=x_{1}^{0} x_{2}^{1} x_{3}^{0} x_{4}^{2} x_{5}^{1}$. In the next section, we will define higher Specht polynomials by using monomials $x_{T}^{i(S)}$.
§2. Higher Specht polynomials. For $T \in T a b(\lambda)$, let $R(T)$ and $C(T)$ denote the row stabilizer and the column stabilizer of T respectively and consider the Young symmetrizer

$$
\varepsilon_{T}=\sum_{\sigma \in R(T)} \sum_{\tau \in C(T)}(\operatorname{sgn} \tau) \tau \sigma,
$$

which is an element of the group algebra $\boldsymbol{Q} S_{n}$. We now define the polynomial F_{T}^{S} by

$$
F_{T}^{S}\left(x_{1}, \ldots, x_{n}\right)=\varepsilon_{T}\left(x_{T}^{i(S)}\right)
$$

for $S \in S T a b(\lambda)$ and $T \in \operatorname{Tab}(\lambda)$. For the canonical standard tableau S_{0} of shape λ, where the cells are numbered from the left to the right in consecutive rows, starting from the top, $F_{T}^{S_{0}}$ is proportional to the Specht polynomial of T. We will call F_{T}^{S} the higher Specht polynomial associated with (S, T). For a standard tableau $T \in S T a b(\lambda)$ the higher Specht polynomial F_{T}^{S} is said to be standard. The Robinson-Schensted correspondence assures that

$$
\sum_{\lambda \vdash-n}|S T a b(\lambda)|^{2}=n!
$$

Hence we have the set of $\begin{gathered}\lambda!n \\ n! \\ \text { standard higher Specht polynomials } \\ \mathscr{F}\end{gathered}=\left\{F_{T}^{s}\right.$; $S, T \in S T a b(\lambda), \lambda \vdash n\}$. The following theorem is a fundamental property of the standard higher Specht polynomials.

Theorem 1. (1) The set \mathscr{F} gives a free basis of Λ-module P.
(2) The set \mathscr{F} gives a free basis of \boldsymbol{Q}-algebra H.

Here we only give an outline of the proof. Consider a Λ-valued symmetric Λ-bilinear form on P :

$$
\langle f, g\rangle=\sum_{\sigma \in S_{n}}(s g n \sigma) \sigma(f g) / \prod_{i<j}\left(x_{i}-x_{j}\right), \quad f, g \in P
$$

This bilinear form is nothing but the divided difference $\partial_{\sigma_{0}}(f g)$ corresponding to the longest element $\sigma_{0}=\left(\begin{array}{lllll}1 & 2 & \cdots & n \\ n & n & -1 & \cdots & 1\end{array}\right)$ in S_{n} (cf. [3]). To prove that \mathscr{F} is a free Λ-basis of P, it is sufficient to see that the Gramian with respect to the bilinear form \langle,$\rangle is a non-zero constant. First of all it$ is not difficult to check that for all $f, g \in P$,

$$
\left\langle\varepsilon_{T_{1}}(f), \varepsilon_{T_{2}}(g)\right\rangle=0 \quad \text { or } \quad\left\langle\varepsilon_{T_{2}}(f), \varepsilon_{T_{1}}(g)\right\rangle=0,
$$

unless $T_{2}=T_{1}^{\prime}$, where T^{\prime} denotes the transposed tableau of T. To show that, $\left\langle\varepsilon_{T}\left(x_{T}^{i(S)}\right), \varepsilon_{T^{\prime}}\left(x_{T^{\prime}}^{i\left(S^{\prime}\right)}\right)\right\rangle$ is a non-zero constant for $S, T \in \operatorname{STab}(\lambda)$, it suf-
fices to check the following
Lemma. A pair $(\sigma, \tau) \in R(T) \times C(T)$ satisfies

$$
\left\langle\sigma\left(x_{T}^{i(S)}\right), \tau\left(x_{T^{\prime}}^{i\left(S^{\prime}\right)}\right)\right\rangle \neq 0
$$

if and only if σ fixes $i(S)$ and τ fixes $i\left(S^{\prime}\right)^{\prime}$.
If the set of indices of S_{1} does not coincide with that of S_{2}, then we see that

$$
\left\langle\varepsilon_{T}\left(x_{T}^{i\left(S_{1}\right)}\right), \varepsilon_{T^{\prime}}\left(x_{T^{\prime}}^{i\left(S_{2}^{\prime}\right)}\right)\right\rangle=0 \quad \text { or }\left\langle\varepsilon_{T}\left(x_{T}^{i\left(S_{2}\right)}\right), \varepsilon_{T^{\prime}}\left(x_{T^{\prime}}^{i\left(S_{1}^{\prime}\right)}\right)\right\rangle=0,
$$

for any T. It happens that the sets of indices of S_{1} and S_{2} coincide for the distinct $S_{1}, S_{2} \in S T a b(\lambda)$. For example, both $S_{1}=\begin{array}{lll}1 & 2 \\ 3 & 4 \\ 5\end{array}$ and $S_{2}=\begin{array}{ll}1 & 2 \\ 3 & 6 \\ 5\end{array} 4$
have the indices $\{0,0,1,1,2,2\}$. In this case we can prove the existence of a total ordering " $<$ " in the subset of $\operatorname{STab}(\lambda)$ consisting of such tableaux, for which, if $S_{1}<S_{2}$, then

$$
\left\langle\sigma\left(x_{T}^{i\left(S_{1}\right)}\right), \tau\left(x_{T^{\prime}}^{i\left(S_{S^{\prime}}^{\prime}\right)}\right)\right\rangle=0,
$$

for all $T \in S T a b(\lambda)$ and for all $\sigma \in R(T), \tau \in C(T)$. All these arguments imply that the Gramian of \mathscr{F} with respect to 〈,〉 is a non-zero constant. The statement (2) is an easy consequence of (1).
§3. Irreducible representations in H. For $\lambda \vdash n$, let $V(\lambda)$ be the Specht module corresponding to λ, which is spanned by $\left\{\varepsilon_{T}\left(x_{T}^{i\left(S_{0}\right)}\right)\right.$; $T \in \operatorname{Tab}(\lambda)\}$, where S_{0} is the canonical standard tableau of shape λ. As is well known, $V(\lambda)$ is irreducible and has a basis $\left\{\varepsilon_{T}\left(x_{T}^{i\left(S_{0}\right)}\right) ; T \in \operatorname{STab}(\lambda)\right\}$. In particular, we know

$$
\operatorname{dim} V(\lambda)=|S T a b(\lambda)|=\frac{n!}{\Pi_{(\alpha, \beta)} h(\alpha, \beta)}
$$

where $h(\alpha, \beta)$ denotes the hook length of the (α, β)-cell in the Young diagram λ. Since the S_{n}-module H is isomorphic to the regular representation, each irreducible representation occurs in H with multiplicity equal to its dimension. According to the graduation $H=\bigoplus_{d \geq 0} H_{d}$ the multiplicity in H_{d} is described by the following Poincaré series:

$$
M_{\lambda}(q)=\frac{q^{n(\lambda)} \Pi_{k=1}^{n}\left(1-q^{k}\right)}{\Pi_{(\alpha, \beta)}\left(1-q^{h(\alpha, \beta)}\right)}
$$

where $n(\lambda)=\sum_{i=1}^{n}(i-1) \lambda_{i}$ for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \vdash n$. In other words, the irreducible representation isomorphic to $V(\lambda)$ occurs m_{d} times in H_{d}, where $M_{\lambda}(q)=\sum_{d \geq 0} m_{d} q^{d}$. It is known that $M_{\lambda^{\prime}}(q)$ is the Kostka-Foulkes polynomial of shape λ and weight (1^{n}) (cf. [1,2]).

A basis of each irreducible component is given by higher Specht polynomials as follows.

Theorem 2. Fix $\lambda \vdash n$ and $S \in S T a b(\lambda)$. Then the space $V^{S}(\lambda)=$ $\sum_{T \in T a b(\lambda)} \boldsymbol{Q} F_{T}^{S}$ is an irreducible S_{n}-module in $H_{c(S)}$ isomorphic to $V(\lambda)$ equipped with a basis $\mathscr{F}^{s}(\lambda)=\left\{F_{T}^{S} ; T \in \operatorname{STab}(\lambda)\right\}$.

To prove this theorem it suffices to check that the higher Specht polynomials $F_{T}^{S}(T \in T a b(\lambda))$ satisfy the following Garnir relations. Take the β-th and the γ-th columns of T with $\beta<\gamma$. Fix a number α_{0} so that $1 \leq \alpha_{0} \leq$
$a(\gamma)$, where $\alpha(\gamma)$ is the length of the γ-th column. Denote by $S_{\alpha_{0}}^{\beta, \gamma}$ the group of permutations of the set $\left\{c\left(\alpha_{0}, \beta\right), c\left(\alpha_{0}+1, \beta\right), \ldots, c(\alpha(\beta), \beta), c(1, \gamma)\right.$ $\left.c(2, \gamma), \ldots, c\left(\alpha_{0}, \gamma\right)\right\}$ and define the Garnir element by

$$
G_{a_{0}}^{\beta, r}=\sum_{\substack{\sigma \in S_{\alpha_{0}}^{\beta, r}}}(\operatorname{sgn} \sigma) \sigma \in \mathbf{Q} S_{n} .
$$

The Garnir relations for $F \in P$ read

$$
G_{\alpha_{0}}^{\beta, \gamma}(F)=0 \quad\left(1 \leq \alpha_{0} \leq \alpha(\gamma), \beta<\gamma\right) .
$$

It can be proved according to the line in [4] that $F=F_{T}^{S}$ satisfies the Garni] relations for any $S \in S T a b(\lambda)$ and $T \in \operatorname{Tab}(\lambda)$.

Proofs and detailed discussions will be published elsewhere.

References

[1] A. M. Garsia and C. Procesi: On certain graded S_{n}-modules and the q-Kostk: polynomials. Adv. Math., 94, 82-138 (1992).
[2] I. G. Macdonald: Symmetric Functions and Hall Polynomials. Oxford Universit. Press (1979).
[3] -: Notes on Schubert Polynomials. Université de Québec à Montréal (1991).
[4] M. H. Peel: Specht modules and symmetric groups. J. Alg., 36, 88-97 (1975).
[5] B. Sagan: The Symmetric Groups. Wadsworth and Brooks (1991).

