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Abstract" We shall define a curve of constant angle c, 0 < cr < zr in

the plane R2. This curve is a closed convex curve parametrized by 0 e T
R/2rcZ and characterized by a C function p(O)called the supporting

function. We shall show that /(0), the second derivative of p(O)in the

sense of distributions of L. Schwartz, belongs to L. This result is the best

possible one if the angle c is general.
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1. Characteristic function Z a and modified characteristic function :a.
Let cr be a given angle 0 < cr < re. Put c zr c. We use the notations
(1.1) q (cr) sin or, c. (c0 cos a, g (or) = sin cr / 2, g (or) cos c/2
and we omit the variable as far as there is no confusion. Let Y2a min{g

1,

The open intervals I and J are defined as follows’
(.2) (- ?, 2),

(0, Q) for 0 < or_< 7r/2
(1.3) J= (- c2, 1) for re/2_< or<

The characteristic function Z and the modified characteristic function
are defined by the formulas
(1.4) z(t) cx(1 t)/- ct, t ];
(1.5) ;g(s) gt(1 s2) /2- ’2s, S ( I or S J.

We state some properties of these functions without proofs.
Proposition 1.1. Z maps Ja onto Ja and is strictly monotone decreasing.

-1
Z has the only one fixed point g. Its inverse mapping Z coincides with Z. )
maps ]a onto Ia and is strictly monotone decreasing. )a maps to O. Its inverse

mapping ) has the same expression as

)a has the linearization effect on 2:a as follows"

Prolmsition 1.2. If w belongs to Ia, 1) belongs to ]a, and w )a(P), then

(z(P)) w.
2. Curves of enstant angle or. Let C be the circle of radius r with the

center at the origin of the plane Re, and call it the director circle. (This termi-
nology comes from the classical example of ellipses, that is, cr
Hereafter we assume r- 1, without loss of generality. Let A be a figure con-
tained in C. A figure simply means here a subset of Re For a point P on C,
we put

C(P ;A) {ray" starting from P, passing through a point of A},



404 S. MATSUURA [Vol. 69(A),

where a ray means a closed half line. C(P ;A) is called the sight-cone at P
for A. We assume that C(P;A) is a closed convex cone with angle c at the
vertex P. Suppose that the angle c at P is independent of P. Then, there ex-
ists a closed convex set D with non-empty interior such that 8D - A - D,
where 8D designates the boundary of D. (In fact, D- pc C(P;A) and
the origin O lies in the interior of D.) A 8D is a closed convex curve by
definition. It is clear that C(P;A) C(P;A) C(P;D) for every P on
C. Thus, if we neglect the internal structure of A, it is enough to study D or
A (D. A is in fact a strictly convex curve, that is, no part of it is a straight
line segment. We call A a convex curve of constant angle c with the director
circle C.

R2In general to characterize a closed convex curve in it is enough to
obtain its supporting function p(O) defined by
(2.1) p(0) sup (x cos 8 + y sin 0).

(x,y)A

It is well known that if A is strictly convex, then p is cl-function with
period 27r. A has the following parametric representation"

(x(O)) (cos 0--sin0)(p(O))(2.2) y(O) sin0 cos0 /(8)
0<_ O--<2r,

where we denote (O) dp(O)/dO. This is a continuous closed curve, that
is, (x(0), y(0)) depends continuously on O but not C in O in general. In
fact, in the present convex case, the second derivative p(0) in the sense of
distributions of L. Schwartz satisfies the inequality" p + p --> 0, where p p
is, if p is C2, the radius of curvature of A. This means that the left-hand
side is a non-negative Radon measure. We can characterize convex curves of
constant angle a by p(0) as follows. But we omit the proof.

Theorem 2.1. A continuous function p (O) of O is the supporting function of
a convex curve of constant angle a if and only if p(O) satisfies the following four
conditions:
(1 ) p () is a function with period 2.
(2) For every O, p (0) belongs to
(3 ) p(o + - a) z.(p(o)).

[periodicity]
[inequality]
[functional equation]

p W p O. [differential inequality]
Remark. The last differential inequality is the inequality in the sense

of distributions of L. Schwartz. Thus, if we put/2 p 4- p then we get/2 _>
0, that is,/2 is a non-negative Radon measure. We can replace these two con-
ditions for (4). If A is unknown, then both p and/2 are unknown. Hence we
have a system of five relations for two unknown quantities.

For every c, 0 < a < 7r, there exists a convex curve of constant angle
c. In fact, if we employ the function p(O) gl, we get a circle of radius g
concentric with the director circle C. We call this the trivial curve of con-
stant angle c.

The totality of functions p satisfying the four conditions of the above
theorem is denoted by a or more precisely c2nvex. When :a is a singleton

{g} is not interesting. The following theorem, whose proof shall be
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published elsewhere, is the answer to the question’ "Is Pa {gl)?"
Theorem 2.2. (I) If a / zc is irrational, then

(II) Suppose that a/zc is rational and m/n is its irreducible fraction representa-
tion.

(i) If mn is odd, then a {gl}.
(ii) If mn is even, then {g} is a proper subset of a.

3. Local regularity. Now we state and prove the main theorem.
Theorem 3.1. The supporting function p(O) of a convex curve of constant

angle cr belongs to C and its second derivative " belongs to L. This result is

the best possible one if the angle is general.

Proof. By a routine work in the elementary geometry, we can show that
if a convex curve A is of constant angle c, then it is strictly convex. Hence
its supporting function p belongs to C.

Next we shall show that belongs to L. We use the same notation as in
Theorem 2.2. By Theorem 2.2, we can reduce to the case that mn is even,
because the other cases are trivial. Replace 0 by 0 + zr--c in (3 ) in
Theorem 2.1 and use (3), then Proposition 1.1 implies that

1)(0 + 2(r- )) Z(P(0 + zr- c))
z(z(p(0))) p(o).

Since p(O) is 2zr-periodic, we have for every integer k,
p(o) p((o + 2a)

p(O + 2a) p(O + 2ka),
that is, 2a is a period of p(O). Hence for all integers k, 1

p(O) p(O + 21rr + 2ka)
p(O + 21 + 2k(m/n)rr)
p(O + (In + km)2rr/n).

Choose k, 1 so that In + km 1, then p(O + 2rr/n) p(0), that is, 2rr/n

is a period of p(O). Since rr- a (n- m)rr/n and n--m is odd, (3 in
Theorem 2.1 implies that
(3.1) p(O + re Z(P(O)).
Put q(O) p(O + zr/n), l.t P + )’, and v q + . Then (4 in Theorem
2.1 implies that > 0. Since we can justify the following Leibniz formula"
(fg) jg + fR, where f is continuous and g is of bounded variation, that
is, R is a Radon measure, if we differentiate (3.1) twice then we have
(3.2) z() + z() (/;) + z().
Hence
(a.3) - z,(P)g z,(P) + z,(P) (/;) + z,(P)P.
Consider the Lebesgue decomposition of both sides of (3.3) with respect to
the Lebesgue measure. Since the right-hand side of (3.3) is absolutely con-
tinuous, it implies that
(3.4) sing (-)(.’(P)lu) O,
where sing denotes the singular part of a Radon measure. On the other hand,
Z(P) < 0 implies that
(3.5) sing v sing 0,
because singular parts of non-negative Radon measures are also non-
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negative. Hence both p and p are locally summable. The left-hand side of
(3.3) is bounded below, because it is non-negative. The right-hand side of
(3.3) is bounded above, because it is continuous and periodic. Thus p and p
are essentially bounded and therefore p is also essentially bounded.

Finally we shall construct a supporting function p whose second deriva-
tive p is essentially everywhere discontinuous, that is, however the values of p
on any sets of measure zero are altered, }" remains everywhere discon-
tinuous. This example is enough to show that the local regularity of p is the
best possible one in general. Put
(3.6) w(O) )(p(O)),
where ;g is defined by (1.5). Then (3.1) implies that
(3.7) w(O + rr/n) w(O)
and Proposition 1.1 implies that
(3.8) p(O) (w(O))
and the second derivative of (3.8) is

(3.9) ’() ;g(w(O)) (()) 2 -t- ;g(w(0))(O).
Since ) a is real analytic, (3.9) implies that ’()is discontinuous at 0o if
b(0) is continuous at 0o and () is discontinuous at o. Therefore if we
construct a function w(O) satisfying (3.7) and w(0) Ia such that z0 is con-

tinuous and is essentially everywhere discontinuous, then we have a sup-
porting function p(O) whose second derivative /" is essentially everywhere
discontinuous. Let us construct the function w(0) having the above property.
First we construct v(O), j 0,1,2, satisfying Vo(0) Ia and
(3.10) v(O + zr/n) v(O), j 0,1,2.
For arbitrary L function u(O) on [0, rc/n], we may assume that u(0) 0
and u(zc/n) --0 without loss of generality, we extend u(O) first to an odd
function on [-- zc/n, re and next to a 2zr/n-periodic function on [0, 2zr].
Then u(O + zc/n) u(O). Put vo(O) su(O) for s > 0 and choose s so
small that vo(O) I. Put

fo
0 1;r/n

Vo(V)dvvl(O) Vo(V)dv -.,o
and

e 1
v (r) dr.v. O) v (r) dv

Then (3.10) are satisfied. Hence if we put w(O) riv.(O) for 2 > 0, then
(3.7) is satisfied. Choose r] so small that w(O) Ia. Since we can construct
an essentially everywhere discontinuous function u(O) on [0, re/n], whose
example shall be given in Appendix, it implies that w(O)has the desired
property. Q.E.D.

Appendix. In this appendix, we shall give an example of an essentially
everywhere discontinuous L function on R. Put

{ 1
ho(x) --loglx[, 1 <_x_< 1.

0, otherwise
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Then ho(x)

_
0 and J_oo h(x) dx- 1. Fix a numbering of the rational

numbers {rn;n 1,2,3,...} and put

h (x) ho (x r,)/ 2.
Then h(x) is unbounded on every non-void open interval. Since

h (x) dx ho (x r) dx/2 1,

it implies that h(x) is summable. However the values of h(x) on any sets of
measure zero are altered, h(x) remains discontinuous at every point in R.
Hence if we put

g(x)
2 tan-i h (x)

then g(x) has the desired property.
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