92. On the Local Regularity of Solutions to the Simultaneous Relations Characterizing the Supporting Functions of Convex Curves of Constant Angle

By Shigetake Matsulra
RIMS, Kyoto University
(Communicated by Kiyosi ITÔ, M. J. A., Dec. 13, 1993)

Abstract

We shall define a curve of constant angle $\alpha, 0<\alpha<\pi$ in the plane \boldsymbol{R}^{2}. This curve is a closed convex curve parametrized by $\theta \in \boldsymbol{T}$ $=\boldsymbol{R} / 2 \pi \boldsymbol{Z}$ and characterized by a C^{1} function $p(\theta)$ called the supporting function. We shall show that $\ddot{p}(\theta)$, the second derivative of $p(\theta)$ in the sense of distributions of L. Schwartz, belongs to L^{∞}. This result is the best possible one if the angle α is general.

Key words: local regularity; supporting function.

1. Characteristic function χ_{α} and modified characteristic function $\tilde{\chi}_{\alpha}$. Let α be a given angle $0<\alpha<\pi$. Put $\hat{\alpha}=\pi-\alpha$. We use the notations
(1.1) $\quad c_{1}(\alpha)=\sin \alpha, c_{2}(\alpha)=\cos \alpha, \tilde{c}_{1}(\alpha)=\sin \alpha / 2, \tilde{c}_{2}(\alpha)=\cos \alpha / 2$ and we omit the variable as far as there is no confusion. Let $\Omega_{\alpha}=\min \left\{\tilde{c}_{1}, \tilde{c}_{2}\right\}$. The open intervals I_{α} and J_{α} are defined as follows:

$$
J_{\alpha}= \begin{cases}I_{\alpha}=\left(-\Omega_{\alpha}, \Omega_{\alpha}\right) \\ \left(0, c_{1}\right) & \text { for } 0<\alpha \leq \pi / 2 \tag{1.3}\\ \left(-c_{2}, 1\right) & \text { for } \pi / 2 \leq \alpha<\pi\end{cases}
$$

The characteristic function χ_{α} and the modified characteristic function $\tilde{\chi}_{\alpha}$ are defined by the formulas

$$
\begin{gather*}
\chi_{\alpha}(t)=c_{1}\left(1-t^{2}\right)^{1 / 2}-c_{2} t, t \in J_{\alpha} \tag{1.4}\\
\tilde{\chi}_{\alpha}(s)=\tilde{c}_{1}\left(1-s^{2}\right)^{1 / 2}-\tilde{c}_{2} s, s \in I_{\alpha} \text { or } s \in J_{\alpha} .
\end{gather*}
$$

We state some properties of these functions without proofs.
Proposition 1.1. χ_{α} maps J_{α} onto J_{α} and is strictly monotone decreasing. χ_{α} has the only one fixed point \tilde{c}_{1}. Its inverse mapping χ_{α}^{-1} coincides with $\chi_{\alpha} \cdot \tilde{\chi}_{\alpha}$ maps J_{α} onto I_{α} and is strictly monotone decreasing. $\tilde{\chi}_{\alpha}$ maps \tilde{c}_{1} to 0 . Its inverse mapping $\tilde{\chi}_{\alpha}^{-1}$ has the same expression as $\tilde{\chi}_{\alpha}$.
$\tilde{\chi}_{\alpha}$ has the linearization effect on χ_{α} as follows:
Proposition 1.2. If w belongs to I_{α}, p belongs to J_{α}, and $w=\tilde{\chi}_{\alpha}(p)$, then $\tilde{\chi}_{\alpha}\left(\chi_{\alpha}(p)\right)=-w$.
2. Curves of constant angle α. Let C be the circle of radius r with the center at the origin of the plane \boldsymbol{R}^{2}, and call it the director circle. (This terminology comes from the classical example of ellipses, that is, $\alpha=\pi / 2$.) Hereafter we assume $r=1$, without loss of generality. Let A be a figure contained in C. A figure simply means here a subset of \boldsymbol{R}^{2}. For a point P on C, we put

$$
C(P ; A)=\{\text { ray } ; \text { starting from } P, \text { passing through a point of } A\}
$$

where a ray means a closed half line. $C(P ; A)$ is called the sight-cone at P for A. We assume that $C(P ; A)$ is a closed convex cone with angle α at the vertex P. Suppose that the angle α at P is independent of P. Then, there exists a closed convex set D with non-empty interior such that $\partial D \subseteq A \subseteq D$, where ∂D designates the boundary of D. (In fact, $D=\cap_{p \in C} C(P ; A)$ and the origin O lies in the interior of D.) $\Lambda=\partial D$ is a closed convex curve by definition. It is clear that $C(P ; \Lambda)=C(P ; A)=C(P ; D)$ for every P on C. Thus, if we neglect the internal structure of A, it is enough to study D or $\Lambda=\partial D . \Lambda$ is in fact a strictly convex curve, that is, no part of it is a straight line segment. We call Λ a convex curve of constant angle α with the director circle C.

In general, to characterize a closed convex curve in \boldsymbol{R}^{2}, it is enough to obtain its supporting function $p(\theta)$ defined by

$$
\begin{equation*}
p(\theta)=\sup _{(x, y) \in \Lambda}(x \cos \theta+y \sin \theta) \tag{2.1}
\end{equation*}
$$

It is well known that if Λ is strictly convex, then p is C^{1}-function with period 2π. Λ has the following parametric representation:

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\cos \theta-\sin \theta \tag{2.2}\\
\sin \theta & \cos \theta
\end{array}\right)\binom{p(\theta)}{\dot{p}(\theta)}, 0 \leq \theta \leq 2 \pi
$$

where we denote $\dot{p}(\theta)=d p(\theta) / d \theta$. This is a continuous closed curve, that is, $(x(\theta), y(\theta))$ depends continuously on θ but not C^{1} in θ in general. In fact, in the present convex case, the second derivative $\ddot{p}(\theta)$ in the sense of distributions of L. Schwartz satisfies the inequality: $p+\ddot{p} \geq 0$, where $p+\ddot{p}$ is, if p is C^{2}, the radius of curvature of Λ. This means that the left-hand side is a non-negative Radon measure. We can characterize convex curves of constant angle α by $p(\theta)$ as follows. But we omit the proof.

Theorem 2.1. A continuous function $p(\theta)$ of θ is the supporting function of a convex curve of constant angle α if and only if $p(\theta)$ satisfies the following four conditions:
(1°) $p(\theta)$ is a function with period 2π. [periodicity]
(2) For every $\theta, p(\theta)$ belongs to J_{α}. [inequality]
(3) $p(\theta+\pi-\alpha)=\chi_{\alpha}(p(\theta))$. [functional equation]
(4.) $p+\ddot{p} \geq 0$. [differential inequality]

Remark. The last differential inequality is the inequality in the sense of distributions of L. Schwartz. Thus, if we put $\mu=p+\ddot{p}$ then we get $\mu \geq$ 0 , that is, μ is a non-negative Radon measure. We can replace these two conditions for (4°). If Λ is unknown, then both p and μ are unknown. Hence we have a system of five relations for two unknown quantities.

For every $\alpha, 0<\alpha<\pi$, there exists a convex curve of constant angle α. In fact, if we employ the function $p(\theta) \equiv \tilde{c}_{1}$, we get a circle of radius \tilde{c}_{1} concentric with the director circle C. We call this the trivial curve of constant angle α.

The totality of functions p satisfying the four conditions of the above theorem is denoted by \mathscr{P}_{α} or more precisely $\mathscr{P}_{\alpha}^{\text {convex }}$. When \mathscr{P}_{α} is a singleton $\mathscr{P}_{\alpha}=\left\{\tilde{c}_{1}\right\}$ is not interesting. The following theorem, whose proof shall be
published elsewhere, is the answer to the question: "Is $\mathscr{P}_{\alpha}=\left\{\tilde{c}_{1}\right\}$?"
Theorem 2.2. (I) If α / π is irrational, then $\mathscr{P}_{\alpha}=\left\{\tilde{c}_{1}\right\}$.
(II) Suppose that α / π is rational and m / n is its irreducible fraction representation.
(i) If $m n$ is odd, then $\mathscr{P}_{\alpha}=\left\{\tilde{c}_{1}\right\}$.
(ii) If $m n$ is even, then $\left\{\tilde{c}_{1}\right\}$ is a proper subset of \mathscr{P}_{α}.
3. Local regularity. Now we state and prove the main theorem.

Theorem 3.1. The supporting function $p(\theta)$ of a convex curve of constant angle α belongs to C^{1} and its second derivative \ddot{p} belongs to L^{∞}. This result is the best possible one if the angle α is general.

Proof. By a routine work in the elementary geometry, we can show that if a convex curve Λ is of constant angle α, then it is strictly convex. Hence its supporting function p belongs to C^{1}.

Next we shall show that \ddot{p} belongs to L^{∞}. We use the same notation as in Theorem 2.2. By Theorem 2.2, we can reduce to the case that $m n$ is even, because the other cases are trivial. Replace θ by $\theta+\pi-\alpha$ in (3°) in Theorem 2.1 and use (3°), then Proposition 1.1 implies that

$$
\begin{aligned}
p(\theta+2(\pi-\alpha)) & =\chi_{\alpha}(p(\theta+\pi-\alpha)) \\
& =\chi_{\alpha}\left(\chi_{\alpha}(p(\theta))\right)=p(\theta) .
\end{aligned}
$$

Since $p(\theta)$ is 2π-periodic, we have for every integer k,

$$
\begin{aligned}
p(\theta) & =p((\theta+2 \alpha)-2 \alpha) \\
& =p(\theta+2 \alpha)=p(\theta+2 k \alpha)
\end{aligned}
$$

that is, 2α is a period of $p(\theta)$. Hence for all integers k, l

$$
\begin{aligned}
p(\theta) & =p(\theta+2 l \pi+2 k \alpha) \\
& =p(\theta+2 l \pi+2 k(m / n) \pi) \\
& =p(\theta+(l n+k m) 2 \pi / n)
\end{aligned}
$$

Choose k, l so that $l n+k m=1$, then $p(\theta+2 \pi / n)=p(\theta)$, that is, $2 \pi / n$ is a period of $p(\theta)$. Since $\pi-\alpha=(n-m) \pi / n$ and $n-m$ is odd, $\left(3^{\circ}\right)$ in Theorem 2.1 implies that

$$
\begin{equation*}
p(\theta+\pi / n)=\chi_{\alpha}(p(\theta)) \tag{3.1}
\end{equation*}
$$

Put $q(\theta)=p(\theta+\pi / n), \mu=p+\ddot{p}$, and $\nu=q+\ddot{q}$. Then (4°) in Theorem 2.1 implies that $\nu \geq 0$. Since we can justify the following Leibniz formula: $(f g)=\dot{f} g+f \dot{g}$, where f is continuous and g is of bounded variation, that is, \dot{g} is a Radon measure, if we differentiate (3.1) twice then we have

$$
\begin{equation*}
\nu=\chi_{\alpha}(p)+\chi_{\alpha}^{\prime \prime}(p)(\dot{p})^{2}+\chi_{\alpha}^{\prime}(p) \ddot{p} \tag{3.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\nu-\chi_{\alpha}^{\prime}(p) \mu=\chi_{\alpha}(p)+\chi_{\alpha}^{\prime \prime}(p)(\dot{p})^{2}+\chi_{\alpha}^{\prime}(p) p \tag{3.3}
\end{equation*}
$$

Consider the Lebesgue decomposition of both sides of (3.3) with respect to the Lebesgue measure. Since the right-hand side of (3.3) is absolutely continuous, it implies that

$$
\begin{equation*}
\operatorname{sing}\left(\nu-\chi_{\alpha}^{\prime}(p) \mu\right)=0 \tag{3.4}
\end{equation*}
$$

where sing denotes the singular part of a Radon measure. On the other hand, $\chi_{\alpha}^{\prime}(p)<0$ implies that

$$
\begin{equation*}
\operatorname{sing} \nu=\operatorname{sing} \mu=0 \tag{3.5}
\end{equation*}
$$

because singular parts of non-negative Radon measures are also non-
negative. Hence both ν and μ are locally summable. The left-hand side of (3.3) is bounded below, because it is non-negative. The right-hand side of (3.3) is bounded above, because it is continuous and periodic. Thus ν and μ are essentially bounded and therefore \ddot{p} is also essentially bounded.

Finally we shall construct a supporting function p whose second derivative \ddot{p} is essentially everywhere discontinuous, that is, however the values of \ddot{p} on any sets of measure zero are altered, \ddot{p} remains everywhere discontinuous. This example is enough to show that the local regularity of \ddot{p} is the best possible one in general. Put

$$
\begin{equation*}
w(\theta)=\tilde{\chi}_{\alpha}(p(\theta)) \tag{3.6}
\end{equation*}
$$

where $\tilde{\chi}_{\alpha}$ is defined by (1.5). Then (3.1) implies that
(3.7) $\quad w(\theta+\pi / n)=-w(\theta)$
and Proposition 1.1 implies that

$$
\begin{equation*}
p(\theta)=\tilde{\chi}_{\alpha}(w(\theta)) \tag{3.8}
\end{equation*}
$$

and the second derivative of (3.8) is

$$
\begin{equation*}
\ddot{p}(\theta)=\tilde{\chi}_{\alpha}^{\prime \prime}(w(\theta))(\dot{w}(\theta))^{2}+\tilde{\chi}_{\alpha}^{\prime}(w(\theta)) \ddot{w}(\theta) \tag{3.9}
\end{equation*}
$$

Since $\tilde{\chi}_{\alpha}$ is real analytic, (3.9) implies that $\ddot{p}(\theta)$ is discontinuous at θ_{0} if $\dot{w}(\theta)$ is continuous at θ_{0} and $\ddot{w}(\theta)$ is discontinuous at θ_{0}. Therefore if we construct a function $w(\theta)$ satisfying (3.7) and $w(\theta) \in I_{\alpha}$ such that \dot{w} is continuous and \ddot{w} is essentially everywhere discontinuous, then we have a supporting function $p(\theta)$ whose second derivative \ddot{p} is essentially everywhere discontinuous. Let us construct the function $w(\theta)$ having the above property. First we construct $v_{j}(\theta), j=0,1,2$, satisfying $v_{0}(\theta) \in I_{\alpha}$ and

$$
\begin{equation*}
v_{j}(\theta+\pi / n)=-v_{j}(\theta), j=0,1,2 \tag{3.10}
\end{equation*}
$$

For arbitrary L^{∞} function $u(\theta)$ on $[0, \pi / n]$, we may assume that $u(0)=0$ and $u(\pi / n)=0$ without loss of generality, we extend $u(\theta)$ first to an odd function on $[-\pi / n, \pi / n]$ and next to a $2 \pi / n$-periodic function on [$0,2 \pi$]. Then $u(\theta+\pi / n)=-u(\theta)$. Put $v_{0}(\theta)=\varepsilon u(\theta)$ for $\varepsilon>0$ and choose ε so small that $v_{0}(\theta) \in I_{\alpha}$. Put

$$
v_{1}(\theta)=\int_{0}^{\theta} v_{0}(\tau) d \tau-\frac{1}{2} \int_{0}^{\pi / n} v_{0}(\tau) d \tau
$$

and

$$
v_{2}(\theta)=\int_{0}^{\theta} v_{1}(\tau) d \tau-\frac{1}{2} \int_{0}^{\pi / n} v_{1}(\tau) d \tau
$$

Then (3.10) are satisfied. Hence if we put $w(\theta)=\eta v_{2}(\theta)$ for $\eta>0$, then (3.7) is satisfied. Choose η so small that $w(\theta) \in I_{\alpha}$. Since we can construct an essentially everywhere discontinuous function $u(\theta)$ on $[0, \pi / n]$, whose example shall be given in Appendix, it implies that $w(\theta)$ has the desired property.
Q.E.D.

Appendix. In this appendix, we shall give an example of an essentially everywhere discontinuous L^{∞} function on \boldsymbol{R}. Put

$$
h_{0}(x)=\left\{\begin{array}{c}
-\frac{1}{2} \log |x|,-1 \leq x \leq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

Then $h_{0}(x) \geq 0$ and $\int_{-\infty}^{\infty} h_{0}(x) d x=1$. Fix a numbering of the rational numbers $\boldsymbol{Q}=\left\{r_{n} ; n=1,2,3, \ldots\right\}$ and put

$$
h(x)=\sum_{n=1}^{\infty} h_{0}\left(x-r_{n}\right) / 2^{n} .
$$

Then $h(x)$ is unbounded on every non-void open interval. Since

$$
\int_{-\infty}^{\infty} h(x) d x=\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} h_{0}\left(x-r_{n}\right) d x / 2^{n}=1,
$$

it implies that $h(x)$ is summable. However the values of $h(x)$ on any sets of measure zero are altered, $h(x)$ remains discontinuous at every point in \boldsymbol{R}. Hence if we put

$$
g(x)=\frac{2}{\pi} \tan ^{-1} h(x)
$$

then $g(x)$ has the desired property.

Reference

[1] Matsuura, S.: On non-convex curves of constant angle. Functional Analysis and Related Topics, 1991. Lect. Notes in Math., vol. 1540, Springer-Verlag, pp. 251-268 (1993).

