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1. Introduction. Let g2 be an exterior domain in R"(n >-3)with
smooth and compact boundary /’. We consider the isotropic elastic wave
equation with the Neumann boundary condition

(A(Ox) 0t)u(t,x) 0 inR Q,
(N) N(Ox)U(t, x) 0 on R F,

u (0, x) L(x), O,u(O, x) f (x) on

where u(t, x) t(ui(t, x),’’’ ,u(t, x)) is the displacement vector. Using

the stress tensor ai(u)= ,(div u)6i + \Ox + Ox/ and the unit outer

normal vector v(x) t(vl(x), v.(x),’’ ",v,(x)) to X) at x F, we can give
n

the operator A(Oz) and the boundary operator N(Ox) by (A(Oz)u)
nOx,(O’(u)), (N(Ox)U) Z= v(x)a(u) Ir(i 1, 2,’" ",n). Note that A(Ox)

can also be written as A(Ox)u pAu + (,2 + l-t) grad (div u).
We assume that the Lame constants/ and p are independent of the vari-

ables t and x and satisfy
2

2 +a > 0 and/.t > 0.

We define the outgoing resolvent R(z) of the problem (N) as the solution
operator of the reduced elastic wave equation

(A (Ox) + z2) v(x ;z) f(x) in 12,

N(Ox)V(X;Z) 0 on F,
v(x z) is outgoing,

where the word "outgoing" means that v(x;z) is the L2(2)-solution if Im z
< 0 and the analytic continuation of the L (Q) -solution in the region Im z
< 0 if Imz_> O. Note that for any a > 0 with I’ Ba (x R"[Ixl
< a}, R(z) is a B(La(.Q), H($2 f Ba))-valued meromorphic function in
and a B(La($2), H(.Q ( Ba))-valued holomorphic function in Im z _< O,
z 4: O, where La($2)- {f L()[ suppf .Q 71 Ba}, and --C if n is

odd, ’ C \ {0) -ff rr < arg < -ff rr if is even (el. Iwashita

and Shibata [3]).
The purpose of this note is to give some information about the location

of the poles of the outgoing resolvent of the problem (N). For the problem
(N), it is well known that there exists the Rayleigh surface wave propagat-
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ing along the boundary (see Achenbach [1] or Taylor [6]). This fact suggests
that the poles of R(z) approaching to the real axis come out. Furthermore,
we can expect that the poles of the Rayleigh surface wave stated above do
not appear away from the real axis. In this note, we succeed in the justifica-
tion of the latter expectation although we can not prove the former one.

In the case of the scalar-valued wave equation with the Dirichlet or the
Neumann boundary condition or the elastic wave equation with the Dirichlet
boundary condition, if all of the waves go away from the boundary as the
time tends to infinity, then the resolvent defined by the same way as that of
the problem (N)is holomorphic in the region IIm z[ < a loglRe z l-fl
with fixed constants a and / > 0 (see e. g. Iwashita and Shibata [3], Vain-
berg [7]). Hence for the problem (N), we may prove that there are constants
a and fl > 0 such that all of the poles of R(z)in the region ]Imz] < cr
log IRe z I-/ are caused by the Rayleigh surface wave and those poles do
not spread out from a neighborhood of the real axis if any wave except the
Rayleigh surface wave does not remain near the boundary. About this ex-

pectation, we have the following result about the region free from the poles.
Theorem 1. If the boundary F is strictly convex, then for any integer j >-- O,

there is a constant c 0 such that the outgoing resolvent R(z) is holomorphic

in the region

D {z U[ Im z c[ Re z [-),
where U, {z 12 ][ Im z[ < alog[ Re z[ fl} and the constants a, fl > 0
depend only upon F, and l.

Remark. Recently Stefanov and Vodev [5] show the very precise result
about the distribution of the poles of R(z) when the boundary F is the unit
sphere in iI a. In [5], they show that the poles of R(z) are equal to the zeros
of the holomorphic functions which are given by using the spherical Hankel
functions of first order. Hence, in their approach, it is indispensable to

assume that the boundary is the sphere since they have to represent the
solution by using special functions.

We can also get the estimate of R(z) in D.
Theorem 9.. If the boundary F is strictly convex, then for any a 0 with F

Ba, there are constants Ca 0 and Ta 0 such that for any integer j 2 0
we have

R (z) f [l.-,(ens.> -< C [Im z [- z IO-e rllm .I f
for any f L(), l O, 1, 2, z D.

Theorem 2 is useful to get the asymptotic behaviour of the solution of
the problem (N) as the time goes to infinity. If any solution of (N) with com-
pact supported datum decays exponentially, then Theorem 2 implies that the
same arguments as in Vainberg [7] is valid for the problem (N). Thus we
can show that the problem (N) has the uniform local-energy decay property
of strong type in the sense of Definition 0.1 in Kawashita [4]. But this con-

clusion contradicts Theorem 0.2 in [4]. Hence, we can get the following re-

suit.
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Corollary 1. If the boundary F is strictly convex, then for any a 0 with

I Ba, there is a solution u(t, x) of the problem (N) with suppf0
Ba satisfying that the local energy of u(t, x) does not decay exponentially.

Note that Ikehata and Nakamura [2] have already shown the nonde-
caying property of the local energy by using special functions when the
boundary T’ is the unit sphere in R.

2. On proof of the theorems. We begin to introduce the Neumann
operator which plays an important role in proof of Theorems 1 and 2.

We denote by U+(z)g (resp. U-(z)g) the outgoing (resp. incoming) solu-
tion of the reduced elastic wave equation with an inhomogeneous Dirichlet

T +/-
datum g H/(lO Then we define the Neumann operator T+/-(z) as (z)g
N(x) U+/-(z)g. It is well known that T+/-(z) is a B(H/(I3, H/(1-))

valued holomorphic function in Ua, for some c, fl > 0 if the boundary F is
strictly convex (cf. Iwashita and Shibata [3]). Note that the pole Zo of
R(z) contained in Ua is characterized as the point satisfying Ker T+(zo)
{0}, which is equivalent to the fact that Zo is a pole of (T+(z))- as a
B(H/(I’), H/(/)-valued function. Hence, in our approach deducing

Theorems 1 and 2, it is very important to get the estimates of T +/-(z) from
below.

Proposition 1. If the boundary 1" is strictly convex, then there are constants
C C(F, , p) > O, T-- T(F, , p) > 0 such that

g [[H-1/(/’) K C[Im z I-[ z 16e rlIm zl T +/- (z)g [[H-/.r
/ C lira z I-]z g

for any g C (1), z Ua, \ R and integer j >-- O,
where C > 0 is independent of g and z.

When the boundary/ is strictly convex, any singularity of the solution

of (N) except singularity corresponding to the Rayleigh surface wave does
not remain near the boundary (cf. Taylor [6] and Yamamoto [8]). Proposition
1 is based on the above fact.

Using Proposition 1 we have (T+(z)) - is holomorphic in D stated in

Theorem 1 for any integer j--> 0. Furthermore, we get the estimate of
(T +/- (z))-l, if we combine Proposition 1 with the fact that

(T+ (z) g, h) z.<r) (g, T- (Z) h)

for any g, h H/(I and z
These estimates imply Theorem 2. Thus in our approach, the estimates of
T+/-(z) in Proposition 1 are crucial.

In this note, we only show an outline. The detail will be given in a
forthcoming paper.
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