84. Orders in Quadratic Fields. II

By R. A. MOLLIN*) and L.-C. ZHANG**)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1993)

Abstarct: We provide very sharp lower bounds for the class numbers of arbitrary complex quadratic order.

Key words: Complex quadratic order; class number; quadratic polynomial.

The work herein continues that of [5] to which we refer the reader for background information and notation. This also complements the work of the authors in [6] where we dealt with the real case.

Our principal result (Theorem 1 below) provides a sharp lower bound for h_{Δ} when $\Delta < 0$ is the discriminant of any complex quadratic order, and yields as a consequence a complete generalization of the well-known result by Rabinowitsch [8] for $h_{\Delta_0} = 1$, and includes the more recent result by Sasaki [9] for $h_{\Delta_0} = 2$. Furthermore, our results yield sharper bounds than those given heretofore in the literature such as Oesterlé [7] and Buhler, Gross and Zagier [2]. Most recently Sasaki [9] gave the following lower bound

$$(*) h_{\Delta_{\alpha}} \ge d(N(b+\omega))$$

where b is any non-negative integer with $b \leq |\Delta_0|/4 - 1$ and d(m) is the number of (not necessarily distinct) prime divisors of *m*.

It is in the context of (*) that we couch our main result which will be seen to be a much sharper bound as follows. In the following $D = f^2 D_0$ where D_0 is the radicand of $Q(\sqrt{\Delta}) = Q(\sqrt{D_0})$.

Theorem 1. Let $\Delta < 0$ be a discriminant with odd conductor f. If b is any integer and M is any divisor of $N(b + \omega_{\Delta})$ with $M < N(\omega_{\Delta})$ and gcd(M, f)= 1 then $h_{\Lambda} \geq \tau(M)$, the number of distinct positive divisors of M.

Proof. It suffices to show that if $a_1 \neq a_2$ are both divisors of M then $I_1 = [a_1, b + \omega_4]$ is not equivalent to $I_2 = [a_2, b + \omega_4]$. Suppose, to the contrary that $I_1 \sim I_2$.

Claim. There exist relatively prime integers x and y satisfying

(1)
$$((\sigma a_1 x) + (\sigma b + \sigma - 1)y)^2 - Dy^2 = \sigma^2 a_1 a_2.$$

 $a_{2} | (a_{1}x + (2b + \sigma - 1)y).$ $\sigma^{2}a_{1}a_{2} | (D - (\sigma b + \sigma - 1)^{2})y.$ (2)

(3)

We only prove the case where $\sigma = 1$ since the other case is similar. Since $I_1 \sim I_2$ then there exists an element $\gamma \in I_1$ such that $(\gamma)I_2 = (a_2)I_1$

^{*)} Department of Mathematics and Statistics, The University of Calgary, Canada. The first author's research is supported by NSERC Canada grant # A8484.

^{* *)} Mathematics Department, Southwest Missouri State University, U. S. A. The second author's research is supported by an SMSU Faculty Summer Fellowship.

No. 9]

(e.g. see [4, section 3, p. 128] and also [1, Lemma 2.6, p. 110]). If $\gamma = a_1 x + (b + \omega_d)y$ where x and y are rational integers then

 $\begin{bmatrix} (a_1a_2x + a_2by) + a_2y\omega_A, & (a_1bx + (b^2 + D)y) + (a_1x + 2by)\omega_A \end{bmatrix}$ = $[a_1a_2, a_2b + a_2\omega_A].$ Thus there exists a $C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \in SL_2(\mathbb{Z})$ such that $\begin{bmatrix} 1, \omega_A \end{bmatrix} \begin{bmatrix} a_1a_2 & a_2b \\ 0 & a_2 \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} =$ $\begin{bmatrix} 1, \omega_A \end{bmatrix} \begin{bmatrix} a_1a_2x + a_2by & a_1bx + (b^2 + D)y \\ a_2y & a_1x + 2by \end{bmatrix}.$

By comparing entries we have

(4)
$$a_1 a_2 c_{11} + a_2 b c_{21} = a_1 a_2 x + a_2 b y$$

(5)
$$a_1a_2c_{12} + a_2bc_{22} = a_1bx + (b^2 + D)y$$

(6) $a_2 c_{21} = a_2 y$

(7)
$$a_2c_{22} = a_1x + 2by$$

From (4) and (6) we get that $c_{11} = x$ and $c_{21} = y$, and from (5) and (7) we get that $c_{22} = (a_1x + 2bx)/a_2$ and $c_{12} = y(D - b^2)/(a_1a_2)$. Since $|\det C| = 1$ we easily determine that (1) holds, and since c_{22} and c_{12} are integers we see that (2) and (3) hold. Finally, we complete the proof of Claim 1 by observing that $gcd(x, y) = gcd(c_{11}, c_{21}) = 1$.

Let $g = gcd(a_1, a_2)$ and set $a'_i = a_i/g$ for i = 1, 2. We may assume without loss of generality that $a'_i > a'_2 \ge 1$. By (1) we have coprime integers x and y such that

(8)
$$(\sigma g a'_1 x + (\sigma b + \sigma - 1)y)^2 - Dy^2 = \sigma^2 g^2 a'_1 a'_2$$

(9) $a a' \mid (\sigma a' x + (2b + \sigma - 1)y)$

(10)
$$g_{a_2}^{a_2} + (g_{a_1a}^{a_1a_2} + (2b + b - 1)g)$$

 $\sigma^2 g^2 a_1' a_2' | (D - (\sigma b + \sigma - 1)^2) y$

If y = 0 than by (8)

$$\left(\sigma g a_1' x\right)^2 = \sigma^2 g^2 a_1' a_2';$$

whence, $a'_1 \mid a'_2$ a contradiction. Therefore $y \neq 0$.

Claim 2. $g \mid y$. Suppose that g does not divide y. Then there exists a prime p with p^e dividing g but not dividing y. If p = 2 then since

(11) $g \mid (2b + \sigma - 1)y$ from (9) we must have $\sigma = 1$. Thus, from (10), $D \equiv (\sigma b + \sigma - 1)^2 = b^2 \pmod{4}$. This is a contradiction since $D = f^2 D_0$ with $D_0 \equiv 2, 3 \pmod{4}$ and f is odd. Hence, p > 2 and from (11) we get that $p \mid (\sigma b + \sigma - 1)$. Hence, from (8), $p^2 \mid D$ whence $b \mid f$. However, $p \mid g \mid a_1 \mid M$ and gcd(M, f) = 1, a contradiction which secures the Claim 2.

Now set y' = y/g. From (8) we now get that (12) $(\sigma a'_1 x + (\sigma b + \sigma - 1)y')^2 - D(y')^2 = \sigma^2 a'_1 a'_2$. Since $(y')^2 \ge 1$ then (12) implies that $-D \le (\sigma a'_1 x + (\sigma b + \sigma - 1)y')^2 - D(y')^2 = \sigma^2 a'_1 a'_2$. However, $1 < a'_1 a'_2 \le M < N(w_d) = ((\sigma - 1)^2 - D)/\sigma^2$ a

contradiction which secures the theorem.

Corollary 1. If b is any integer with $|\sigma b + \sigma - 1| < \sqrt{-D}$ and M is any proper divisor of $N(b + \omega_{\Delta})$ and gcd(M, f) = 1 with f odd then $h_{\Delta} \ge \tau(M)$.

Proof. If $M \ge N(\omega_d)$ then $N(b + \omega_d)/2 \ge N(\omega_d)$; i.e., $((\sigma b + \sigma - 1)^2 - D)/(2\sigma^2) \ge ((\sigma - 1)^2 - D)/\sigma^2$ which implies that $(\sigma b + \sigma - 1)^2 \ge 2(\sigma - 1)^2 - D$; i.e., that $|\sigma b + \sigma - 1| \ge \sqrt{-D}$ a contradiction. The result now follows from Theorem 1.

Corollary 2 (Rabinowitsch [8]). If $\Delta = \Delta_0 < 0$ is a discriminant then $h_A = 1$ if and only if

$$F_{\Delta}(x) = ((\sigma x + \sigma - 1)^2 - D)/\sigma^2$$

is a prime for all non-negative integers $x \leq |\Delta|/4 - 1$.

Proof. First we observe two facts.

1. $F_{\Delta}(b) = N(b + \omega_{\Delta})$, and

2. If $0 \le b \le |\Delta|/4 - 1$ then $F_{\Delta}(b) \le N(\omega_{\Delta})^2$.

Hence, if $F_{\Delta}(b)$ is not prime for some non-negative integer $b \leq |\Delta|/4$ - 1 then there exists a divisor M > 1 of $F_{\Delta}(b)$ with $M < N(\omega_{\Delta})$. Hence, by Theorem 1, $h_{\Delta} \geq \tau(M) \geq 2$. Conversely, if $h_{\Delta} > 1$ then there exists a primitive, reduced, non-principal ideal $I = [a, b + \omega_{\Delta}]$ with $0 \leq b < a < M_{\Delta} = \sqrt{-\Delta/3} \leq |\Delta|/4 - 1$; whence, $N(b + \omega_{\Delta}) \leq N(\omega_{\Delta})^2$ (see [1, §2]). Set $F_{\Delta}(b) = N(b + \omega_{\Delta})$ and observe that $b \leq |\Delta|/4 - 1$. Since $a \mid F_{\Delta}(b)$ and Iis not principal then $F_{\Delta}(b)$ cannot be prime.

Finally we illustrate the sharpness of our bound in Theorem 1.

Table I.		have da	famla		1 — /	1 /	Λ	1 - 1		structure	£	\mathbf{c}
I apie. Lo	ower	pounds.	tor n	, when z	h — 4	\sim	U.	and cla	ss group	structure	tor	U.

- D	σ	b	$N(b+\omega_{\Delta})$	М	$N(\omega_{\Delta})$	$\tau(M)$	h_{Δ}	C_{4}
14	1	2	18	6	14	4	4	<i>C</i> ₄
23	2	1	8	4	6	3	3	C_3
26	1	8	90	18	26	6	6	$C_2 \times C_3$
41	1	7	90	30	41	8	8	
110	1	40	1710	90	110	12	12	$C_2 \times C_2 \times C_3$
111	2	4	48	24	28	8	8	<i>C</i> ₈
230	1	20	630	210	230	16	20	$C_2 \times C_2 \times C_5$
303	2	4	96	48	76	10	10	$C_2 \times C_5$
337	1	53	3146	286	337	8	8	<i>C</i> ₈
357	1	4	112	56	357	8	8	$C_2 \times C_2 \times C_2$
379	2	5	125	25	95	3	3	C_3
411	2	16	375	75	103	6	6	$C_2 \times C_3$
443	2	11	243	81	111	5	5	<i>C</i> ₅
466	1	22	950	190	466	8	8	<i>C</i> ₈
467	2	26	819	63	117	6	7	<i>C</i> ₇
473	1	11	594	198	473	12	12	$C_2 \times C_2 \times C_3$
485	1	55	3510	270	485	16	20	$C_2 \times C_2 \times C_5$
499	2	24	725	25	125	3	3	C_3
555	2	7	195	15	139	4	4	$C_2 \times C_2$
1155	2	52	3045	105	289	8	8	$C_2 \times C_2 \times C_2$
. 1365	1	105	12390	210	1365	16	16	$ \begin{array}{c} C_2 \times C_2 \\ \hline C_2 \times C_2 \times C_2 \\ \hline C_2 \times C_2 \times C_2 \times C_2 \end{array} $
3315	2	97	10335	195	829	8	8	$C_2 \times C_2 \times C_2$

Remark 1. The last four entries in Table are interesting in that they all have class groups of exponent $e_{\Delta} = 2$. In [6] Mollin was able to provide a complete list of all complex quadratic fields with class groups of exponent 2, under the assumption of a suitable Riemann Hypothesis. In point of fact $|\Delta| = |\Delta_0| = 3315$ in the largest one. We also see that our Theorem 1 above yields a much sharper bound than that given by Sasaki.

Acknowledgement. The authors thank the referee for suggestions which simplified the presentation of the results herein.

References

- J. Buchmann and H. C. Williams: A key-exchange system based on imaginary quadratic fields. J. Cryptology, 1, 107-118 (1988).
- [2] J. Buhler, B. Gross and D. Zagier: On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3. Math. Comp., 44, 473-481 (1985).
- [3] B. Gross and D. Zagier: Points de Heegener et dérivées de fonctions L. C. R. Acad. Sci. Paris., 297, 85-87 (1983).
- [4] H. Lenstra: On the calculation of regulators and class numbers of quadratic fields. Journées Arithmétiques (ed. J. V. Armitage). Cambridge University Press, pp. 123-150 (1982).
- [5] R. A. Mollin: Orders in quadratic fields. I. Proc. Japan Acad., 69A, 45-48 (1993).
- [6] R. A. Mollin and L.-C. Zhang: Reduced ideals, the divisor function, continued fractions, and class numbers of real quadratic fields. Publicationes Mathematicae (to appear).
- [7] J. Oesterlé: Nombres de classes des corps quadratiques imginaires. Sem. N. Boubaki, Exp. 631 (1983-1984).
- [8] G. Rabinowitsch: Eindeutigkeit der Zerlegung in Primfaktoren in quadratischen Zahlkörpern. J. reine angew. Math., 142, 153-164 (1913).
- [9] R. Sasaki: On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad., 62A, 37-39 (1986).