82. Spined Products of Some Semigroups*)

By Miroslav ĆIRIĆ and Stojan BogdanoviĆ
University of Niš, Yugoslavia
(Communicated by Shokichi IYanaga, M. J. A., Nov. 12, 1993)

Spined products of semigroups were first defined and studied by N . Kimura, 1958, [7]. After that, spined products have been considered many a time, predominantly those of a band and a semilattice of semigroups with respect to their common semilattice homomorphic image. Spined and subdirect products of a band and a semilattice of groups are studied by M. Yamada [13], [14], J. M. Howie and G. Lallement [6] and by M. Petrich [10]; spined products of a band and some types of semilattices of monoids are studied by F. Pastijn [8], A. El-Qallali [3], [4], and by R. J. Warne [12]. For other considerations of these products, we refer to [4], [5], [7], [9], [15]. In the quoted papers, spined products are considered in connection with some types of bands of semigroups. In this paper, we give a general composition for bands of semigroups that are (punched) spined products of a band and a semilattice of semigroups. This composition, in some sense, is a generalization of a well-known semilattice composition (see Theorem III 7.2. [9]).

Let B be a band. By \leq_{1} and \leq_{2} we denote quasi-orders on B defined by $i \leq_{1} j \Leftrightarrow i j=j, i \leq_{2} j \Leftrightarrow j i=j$, and by \leq we denote the natural order on B defined by " $i \leq j$ means that $i \leq_{1} j$ and $i \leq_{2} j$ ". For $i \in B$, we will denote by [i] the class of an element i in the greatest semilattice decomposition of a band B (so [i] is an element of the greatest semilattice homomorphic image of B). If S is a band B of semigroups $S_{i}, i \in B$, then for $k \in B, F_{k}$ will denote the semigroup $F_{k}=\cup\left\{S_{i} \mid i \in B\right.$, [i] $\left.\geq[k]\right\}$. If θ is a homomorphism of a semigroup S into a semigroup S^{\prime}, and if T is a common subsemigroup of S and S^{\prime}, then θ is a T-homomorphism if $a \theta=a$, for all $a \in T$. A subsemigroup T of a semigroup S is a retract of S if there exists a homomorphism θ of S onto T such that $a \theta=a$, for all $a \in T$. We call such a homomorphism a retraction. If T is a subsemigroup of a semigroup S, then we say that S is an oversemigroup of T. If ρ is a congruence on a semigroup S, then we denote by ρ^{\natural} the natural homomorphism of S onto S / ρ. If P and Q are two semigroups having a common homomorphic image Y, then the spined product of P and Q with respect to Y is $S=\{(a, b) \in P \times Q \mid a \varphi=b \psi\}$, where $\varphi: P \rightarrow Y$ and $\psi: Q \rightarrow Y$ are homomorphisms onto Y. If Y is a semilattice and P and Q are a semilattice Y of semigroups $P_{a}, \alpha \in Y$, and $Q_{\alpha}, \alpha \in Y$, respectively, then the spined product of P and Q with respect to Y is $S=\cup_{\alpha \in Y} P_{\alpha} \times Q_{\alpha}$. A subsemigroup S of a spined product of semigroups P and Q with respect to Y, that is also a subdirect product of P and Q, is a punched spined product of P and Q with respect to Y.

[^0]For undefined notions and notations we refer to [5] and [9].
Lemma 1. Let B be a band. To each $i \in B$ we associate a semigroup S_{i} and an oversemigroup D_{i} of S_{i} such that $D_{i} \cap D_{j}=\emptyset$, if $i \neq j$. For $i, j \in B$, $[i] \geq[j]$, let $\phi_{i, j}$ be a mapping of S_{i} into D_{i} and suppose that the family of $\phi_{i, j}$ satisfies the following conditions:
(1) $\phi_{i, i}$ is the identity mapping on S_{i}, for every $i \in B$;
(2) $\left(S_{i} \phi_{i, i j}\right)\left(S_{j} \phi_{j, i j}\right) \subseteq S_{i j}$, for all $i, j \in B$;
(3) $\left[\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)\right] \phi_{i j, k}=\left(a \phi_{i, k}\right)\left(b \phi_{j, k}\right), \quad$ for $a \in S_{i}, b \in S_{j},[i j] \geq[k], i, j$, $k \in B$.
Define a multiplication * on $S=\cup_{i \in B} S_{i}$ by: $a * b=\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)$, for $a \in$ $S_{i}, b \in S_{j}$. Then S is a band B of semigroups $S_{i}, i \in B$, in notation $S=(B ;$ $S_{i}, \phi_{i, j}, D_{i}$).

Proof. Assume $a \in S_{i}, b \in S_{j}, c \in S_{k}, i, j, k \in B$. Then by (3) we have

$$
\begin{aligned}
(a * b) * c & =\left[\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)\right] * c=\left[\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)\right] \phi_{i j, i j k}\left(c \phi_{k, i j k}\right) \\
& =\left(a \phi_{i, i j k}\right)\left(b \phi_{j, i j k}\right)\left(c \phi_{k, i j k}\right)=\left(a \phi_{i, i j k}\right)\left[\left(b \phi_{j, j k}\right)\left(c \phi_{k, j j}\right)\right] \phi_{j k, i j k} \\
& =a *\left[\left(b \phi_{j, j k}\right)\left(c \phi_{k, j k}\right)\right]=a *(b * c) .
\end{aligned}
$$

Thus, S is a semigroup. Clearly, it is a band B of semigroups S_{i}.
If we assume $i=j$ in (3), then we obtain that $\phi_{i, k}$ is a homomorphism, for all $i, k \in B,[i] \geq[k]$. If $D_{i}=S_{i}$, for each $i \in B$, then we write $S=\left(B ; S_{i}, \phi_{i, j}\right)$. Here the condition (2) can be omitted.

Theorem 1. Let S be a band B of semigroups $S_{i}, i \in B$. Then
(a) $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$ if and only if for every $k \in B$ there exists an oversemigroup D_{k} of S_{k} and an S_{k}-homomorphism of F_{k} into D_{k};
(b) if $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$, then we can assume that $D_{k}=\left\{a \phi_{i, k} \mid a \in S_{i}\right.$, $[i] \geq[k]\}$, for each $k \in B$;
(c) $S=\left(B ; S_{i}, \phi_{i, j}\right)$ if and only if for every $k \in B, S_{k}$ is a retract of F_{k}.

Proof. (a) If $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$, then for $k \in B$, the mapping $\theta_{k}: F_{k} \rightarrow D_{k}$ defined by: $a \theta_{k}=a \phi_{i, k}$, for $a \in S_{i}$, $[i] \geq[k]$, is an S_{k}-homomorphism.

Conversely, suppose that for every $k \in B$ there exists an oversemigroup D_{k} and an S_{k}-homomorphism θ_{k} of F_{k} into D_{k}. For $i, j \in B,[i] \geq$ [j], define a mapping $\phi_{i, j}$ of S_{i} into D_{j} by: $a \phi_{i, j}=a \theta_{j}, a \in S_{i}$. It is clear that (1) holds. Let $a \in S_{i}, b \in S_{j}, i, j \in B$. Then $a, b \in F_{i j}, a b \in S_{i j}$, whence $\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)=\left(a \theta_{i j}\right)\left(b \theta_{i j}\right)=(a b) \theta_{i j}=a b$. Let $k \in B,[i j] \geq[k]$. Then $\left[\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)\right] \phi_{i j, k}=(a b) \theta_{k}=\left(a \theta_{k}\right)\left(b \theta_{k}\right)=\left(a \phi_{i, k}\right)\left(b \phi_{j, k}\right)$. Thus, $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$.
(b). In notations from (a), for $k \in B,\left\{a \phi_{i, k} \mid a \in S_{i},[i] \geq[k]\right\}=$ $F_{k} \phi_{k}$, and it is a subsemigroup of D_{k}. Clearly, every one of the conditions (1)-(3) of Lemma 1 holds for D_{k} if and only if it holds for $F_{k} \phi_{k}$. Thus, (b) holds.
(c) This follows by (a).

If B is a semilattice, then $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$ is a semigroup constructed as in Theorem III 7.2. [9]. In this case, for each $k \in B, S_{k}$ is an ideal of F_{k}, so using well known results from the theory of ideal extensions
of semigroups, in Theorem III 7.2. [9] was proved that every semigroup S that it a semilattice Y of semigroups $S_{\alpha}, \alpha \in Y$, can be composed as $S=\left(Y ; S_{\alpha}\right.$, $\phi_{\alpha, \beta}, D_{\alpha}$), and, furthermore, each D_{α} can be chosen to be a dense extension of S_{α} and that $D_{\alpha}=\left\{b \phi_{\beta, \alpha} \beta \geq \alpha, b \in S_{\beta}\right\}$. This fact will be used in the next considerations to representing a semilattice of arbitrary semigroups.

Also, we will give another construction. If $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$ and if
(4) $S_{i} \phi_{i, j} \subseteq S_{j}$, for $[i]=[j], i, j \in B$;
(5) $\phi_{i, j} \phi_{j, k}=\phi_{i, k}$, for $[i]=[j] \geq[k], i, j, k \in B$;
then we will write $S=\llbracket B ; S_{i}, \phi_{i, j}, D_{i} \rrbracket$. If $S=\left(B ; S_{i}, \phi_{i, j}\right)$ with (4) and (5), then we write $S=\llbracket B ; S_{i}, \phi_{i, j} \rrbracket$. If $S=\left(B ; S_{i}, \phi_{i, j}\right)$ and if $\left\{\phi_{i, j} \mid i, j\right.$ $\in B,[i] \geq[j]\}$ is a transitive system of homomorphisms, i.e. if $\phi_{i, j} \phi_{j, k}=\phi_{i, k}$, for $[i] \geq[j] \geq[k]$, then we will write $S=\left[B ; S_{i}, \phi_{i, j}\right]$.

Let B be a band. To each $i \in B$ we associate a semigroup S_{i} such that $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$. Let $\varphi_{i, j}$ and $\psi_{i, j}$ be homomorphisms of S_{i} into S_{j} defined for $i \geq_{1} j$ and $i \geq_{2} j$, respectively, such that:
(6) for every $i \in B, \varphi_{i, i}=\psi_{i, i}$ is the identity mapping on S_{i};
(7) $\varphi_{i, j} \varphi_{j, k}=\varphi_{i, k}$, for $i \geq_{1} j \geq_{1} k$;
(8) $\phi_{i, j} \psi_{j, k}=\psi_{i, k}$, for $i \geq_{2} j \geq_{2} k$;
(9) $\varphi_{i, j} \psi_{j, k j}=\psi_{i, k} \varphi_{k, k j}$, for $i \geq_{1} j, i \geq_{2} k$.

Define a multiplication $*$ on $S=\cup_{i \in B} S_{i}$ by: $a * b=\left(a \varphi_{i, i j}\right)\left(b \psi_{j, i j}\right)$, for $a \in S_{i}, b \in S_{j}, i, j \in B$. Then by [11] S is a band B of semigroups $S_{i}, i \in$ B. This construction is introduced by B. M. Schein [11], and it has been explored by the authors in [1], where it is denoted by $S=\left[B ; S_{i}, \varphi_{i, j}\right.$, $\psi_{i, j}$] and called a strong band of semigroups S_{i}. It is easy to prove the following lemma:

Lemma 2. If $S=\left[B ; S_{i}, \phi_{i, j}\right]$, then $S=\left[B ; S_{i}, \varphi_{i, j}, \psi_{i, j}\right]$, where $\varphi_{i, j}$ $=\phi_{i, j}$, for $i \geq_{1} j$, and $\psi_{i, j}=\phi_{i, j}$, for $i \geq_{2} j$. Conversely, if $S=\left[B ; S_{i}, \varphi_{i, j}\right.$, $\left.\psi_{i, j}\right]$, then $S=\left[B ; S_{i}, \phi_{i, j}\right]$, where $\phi_{i, j}=\varphi_{i, i j} \psi_{i j, j}$, for $[i] \geq[j]$.

Therefore, the constructions $\left[B ; S_{i}, \varphi_{i, j}, \psi_{i, j}\right.$] and [$B ; S_{i}, \phi_{i, j}$] are equivalent. So [$B ; S_{i}, \phi_{i, j}$] will be called a strong band of semigroups S_{i}. If B is a semilattice, then we obtain a well known strong semilattice of semigroups.

The following lemma is proved by B. M. Schein [11], in the case when S_{i} are monoids, and it is immediate to extend this proof to the general case.

Lemma 3. Let B be a rectangular band.
If $S=\left[B ; S_{i}, \phi_{i, j}\right]$, then each $\phi_{i, j}$, is an isomorphism of S_{i} onto $S_{j}, i, j \in$ B, and for every $k \in B$, the mapping θ of S into $S_{k} \times B$ defined by a $\theta=$ ($a \phi_{i, k}, i$), for $a \in S_{i}, i \in B$, is an isomorphism.

Conversely, if $S=T \times B$, if we assume that $S_{i}=T \times\{i\}, i \in B$ and if we assume that $\phi_{i, j}$ is a mapping of S_{i} into $S_{j}, i, j \in B$, defined by $(a, i) \phi_{i, j}=$ $(a, j), a \in S_{i}$, then $S=\left[B ; S_{i}, \phi_{i, j}\right]$.

Theorem 2. Let a band B be a semilattice Y of rectangular bands B_{α}. If S $=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$, then
(A1) S is a semilattice Y of semigroups $S_{\alpha}=\left(B_{\alpha} ; S_{i}, \phi_{i, j}, D_{i}\right), \alpha \in Y$;
(A2) a relation ρ on S defined by: $a \rho b$ if and only if $a \in S_{i}, b \in S_{j}$, $[i]=$ $[j]=\alpha$, and $a \phi_{i, k}=b \phi_{j, k}$ for all $k \in B, \alpha \geq[k]$, is a congruence on S and T
$=S / \rho$ is a semilattice Y of semigroups $T_{\alpha}=S_{\alpha} \rho^{\natural}$;
(A3) S is a punched spined product of T and B with respect to Y.
Conversely, if S is a punched spined product of $T=\left(Y ; T_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$ and B with respect to Y and if we assume that:
(B1) $S_{i}=\left(T_{\alpha} \times\{i\}\right) \cap S, D_{i}=D_{\alpha} \times\{i\}$, for $i \in B_{\alpha}$;
(B2) for $i, j \in B,[i] \geq[j]$, a mapping $\phi_{i, j}$ of S_{i} into D_{j} is defined by:

$$
(a, i) \phi_{i, j}=\left(a \phi_{[i,,[j]}, j\right) ;
$$

then $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$.
Proof. Let $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$. Then it is clear that (A1) holds.
(A2) It is clear that ρ is an equivalence relation. Assume that $a \rho b$ and $x \in S$. Let $a \in S_{i}, b \in S_{j}, i, j \in B_{\alpha}, \alpha \in Y$ and let $x \in S_{k}, k \in B_{\beta}, \beta \in Y$. Then $a x \in S_{i k}, b x \in S_{j k}, i k, j k \in B_{\alpha \beta}$. Assume $l \in B, \alpha \beta \geq[l]$. Then $\alpha \geq$ [l], so $a \phi_{i, l}=b \phi_{j, l}$. By (3) we obtain that

$$
\begin{aligned}
(a x) \phi_{i k, l} & =\left[\left(a \phi_{i, i k}\right)\left(x \phi_{k, i k}\right)\right] \phi_{i k, l} \\
& =\left(a \phi_{i, l}\right)\left(x \phi_{k, l}\right)=\left(b \phi_{j, l}\right)\left(x \phi_{k, l}\right) \\
& =\left[\left(b \phi_{j, j k}\right)\left(x \phi_{k, j k}\right)\right] \phi_{j k, l}=(b x) \phi_{j k, l} .
\end{aligned}
$$

Thus, $a x \rho b x$. Similarly we prove that $x a \rho x b$. Therefore, ρ is a congruence. Let σ be a semilattice congruence on S determined by the partition $\left\{S_{\alpha} \mid \alpha \in\right.$ $Y\}$. Then $\rho \subseteq \sigma$, so $T=S / \rho$ is a semilattice Y of semigroups $T_{\alpha}=S_{\alpha} \rho^{\natural}$.
(A3) Let ξ be the band congruence on S determined by the partition $\left\{S_{i} \mid i \in B\right\}$. Clearly, $\rho \cap \xi=\varepsilon$, where ε is the equality relation on S, so S is a subdirect product of T and B, where a one-to-one homomorphism Φ of S into $T \times B$ is given by $a \Phi=(a \rho, a \xi), a \in S$. Assume $a \in S$. Let $a \in$ $S_{i}, i \in B_{\alpha}, \alpha \in Y$. Then $a \in S_{\alpha}$, so $a \rho \in T_{\alpha}$, and $a \xi=i \in B_{\alpha}$. Thus, $S \Phi \subseteq \cup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$, so S is a punched spined product of T and B.

Conversely, let $T=\left(Y ; T_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$, let S be a punched spined product of T and B and let S_{i}, D_{i} and $\phi_{i, j}$ be defined by (B1) and (B2). Then it is not hard to verify that $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$.

Theorem 3. Let a band B be a semilattice Y of rectangular bands B_{α}. If S $=\llbracket B ; S_{i}, \varphi_{i, j}, D_{i} \rrbracket$, then
(C1) S is a semilattice Y of semigroups $S_{\alpha}=\left[B_{\alpha} ; S_{i}, \phi_{i, j}\right], \alpha \in Y$;
(C2) each S_{α} is isomorphic to $T_{\alpha} \times B_{\alpha}$, where T_{α} is a semigroups isomorphic to each $S_{i}, i \in B_{\alpha}$;
(C3) there exists a semilattice composition $T=\left(Y ; T_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$ such that S is isomorphic to the spined product of B and T with respect to Y. Furthermore, if $S=\llbracket B ; S_{i}, \phi_{i, j} \rrbracket\left(S=\left[B ; S_{i}, \phi_{i, j}\right]\right)$, then T can be chosen to $T=\left(Y ; T_{\alpha}\right.$, $\left.\phi_{\alpha, \beta}\right)\left(T=\left[Y ; T_{\alpha}, \phi_{\alpha, \beta}\right]\right)$.
Conversely, if S is a spined product of $T=\left(Y ; T_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$ and B with respect to Y and if we assume that:
(D1) $S_{i}=T_{\alpha} \times\{i\}, D_{i}=D_{\alpha} \times\{i\}$, for $i \in B_{\alpha}$;
(D2) for $i, j \in B,[i] \geq[j]$, a mapping $\phi_{i, j}$ of S_{i} into D_{i} is defined by:

$$
(a, j) \phi_{i, j}=\left(a \phi_{[i],[j]}, j\right) ;
$$

then $S=\llbracket B ; S_{i}, \phi_{i, j}, D_{i} \rrbracket$. Furthermore, if $T=\left(Y ; T_{\alpha}, \phi_{\alpha, \beta}\right)\left(T=\left[Y ; T_{\alpha}\right.\right.$, $\left.\left.\phi_{\alpha, \beta}\right\rfloor\right)$, then $S=\llbracket B ; S_{i}, \phi_{i, j} \rrbracket\left(S=\left[B ; S_{i}, \phi_{i, j}\right]\right)$.

Proof. By (5) and by Lemma 3 it follows that (C1) and (C2) hold.
For any $\alpha \in Y$, fix $0_{\alpha} \in B_{\alpha}$, and assume that $T_{\alpha}=S_{0_{\alpha}}, D_{\alpha}=D_{0_{\alpha}}$. For
$\alpha, \beta \in Y, \alpha \geq \beta$, define a mapping $\phi_{\alpha, \beta}$ of T_{α} into D_{β} by $\phi_{\alpha, \beta}=\phi_{0_{\alpha}, 0_{\beta}}$. It is clear that $\phi_{\alpha, \alpha}$ is the identity map of T_{α}, for any $\alpha \in Y$. Assume $\alpha, \beta \in Y$, $a \in T_{\alpha}, b \in T_{\beta}$. Then by (3) we have that

$$
\left(a \phi_{\alpha, \alpha \beta}\right)\left(b \phi_{\beta, \alpha \beta}\right)=\left(a \phi_{0_{\alpha}, 0_{\alpha \beta}}\right)\left(b \phi_{0_{\beta}, 0_{\alpha \beta}}\right)=\left[\left(a \phi_{0_{\alpha}, 0_{\alpha} 0_{\beta}}\right)\left(b \phi_{0_{\beta}, 0_{\alpha} 0_{\beta}}\right)\right] \phi_{0_{\alpha} 0_{\beta}, 0_{\alpha \beta}},
$$

so by (2) and (4) we obtain that $\left(a \phi_{\alpha, \alpha \beta}\right)\left(b \phi_{\beta, \alpha \beta}\right) \stackrel{\alpha_{\alpha,}}{\in} S_{0_{\alpha \beta}}=\stackrel{T_{\alpha \beta}}{T_{\alpha \beta}}$, whence it follows that $\left(T_{\alpha} \phi_{\alpha, \alpha \beta}\right)\left(T_{\beta} \phi_{\beta, \alpha \beta}\right) \subseteq T_{\alpha \beta}$. For $\gamma \in Y, \alpha \beta \geq \gamma$, by (3) and (5)

$$
\begin{aligned}
& {\left[\left(a \phi_{\alpha, \alpha \beta}\right)\left(b \phi_{\beta, \alpha \beta}\right)\right] \phi_{\alpha \beta, r}=\left[\left(a \phi_{0_{\alpha}, 0_{\alpha \beta}}\right)\left(b \phi_{0_{\beta}, 0_{\alpha \beta}}\right)\right] \phi_{0_{\alpha \beta}, 0_{r}}} \\
& =\left[\left(a \phi_{0_{\alpha}, 0_{0} 0_{\beta}}\right)\left(b \phi_{0_{\beta}, 0_{\alpha} 0_{\beta}}\right)\right] \phi_{0_{\alpha} 0_{\beta}, 0_{\alpha \beta}} \phi_{0_{\alpha \beta}, 0_{r}}=\left[\left(a \phi_{0_{\alpha}, 0_{\alpha} 0_{\beta}}\right)\left(b \phi_{0_{\beta}, 0_{\alpha} 0_{\beta}}\right)\right] \phi_{0_{\alpha} 0_{\beta}, 0_{r}} \\
& =\left(a \phi_{0_{\alpha}, 0_{r}}\right)\left(b \phi_{0_{\beta}, 0_{r}}\right)=\left(a \phi_{\alpha, \gamma}\right)\left(b \phi_{\beta, \gamma}\right) \text {. }
\end{aligned}
$$

Thus, by Lemma 1, there exists a semilattice composition $S=\left(Y ; T_{\alpha}, \phi_{\alpha, \beta}\right.$, D_{α}).

Define a mapping Φ of S into $T \times B$ by: $a \Phi=\left(a \phi_{i_{\alpha}, 0_{\alpha}}, i_{\alpha}\right)$, if $a \in S_{i_{\alpha}}$, $i_{\alpha} \in B_{\alpha}, \alpha \in Y$. Clearly, $S \Phi \subseteq \cup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$. Since $\phi_{i_{\alpha}, 0_{\alpha}}$ is an isomorphism of $S_{i_{\alpha}}$ onto $S_{0_{\alpha}}$ (by Lemma 3), then Φ is a bijection of S onto $\cup_{\alpha \in Y} T_{\alpha} \times$ B_{α}.

Assume $a \in S_{i_{\alpha}}, b \in S_{i_{\beta}}, i_{\alpha} \in B_{\alpha}, i_{\beta} \in B_{\beta}, \alpha, \beta \in Y$. Then by (5) and (3)

$$
\begin{aligned}
& (a \Phi)(b \Phi)=\left(a \phi_{i_{\alpha}, 0_{\alpha}}, i_{\alpha}\right)\left(b \phi_{i_{\beta}, 0_{\beta}}, i_{\beta}\right)=\left(\left(a \phi_{i_{\alpha}, 0_{\alpha}} \phi_{\alpha, \alpha \beta}\right)\left(b \phi_{i_{\beta}, 0_{\beta}} \phi_{\beta, \alpha_{\beta}}\right), i_{\alpha} i_{\beta}\right) \\
& =\left(\left(a \phi_{i_{\alpha}, 0} \phi_{0_{\alpha}, 0_{\alpha}}\right)\left(b \phi_{i_{\beta}, 0_{0}} \phi_{0_{\beta}, 0_{\alpha}}\right), i_{\alpha} i_{\beta}\right)=\left(\left(a \phi_{i_{\alpha}, 0_{\alpha}}\right)\left(b \phi_{i_{\beta}, 0_{\alpha}}\right), i_{\alpha} i_{\beta}\right) \\
& =\left(\left[\left(a \phi_{i_{\alpha}, i_{\alpha} i_{\beta}}\right)\left(b \phi_{i_{\beta}, i_{\alpha} i_{\beta}} i_{\beta}\right)\right] \phi_{i_{\alpha} i_{\beta} \alpha_{\alpha},} i_{\alpha} i_{\beta}\right)=\left[\left(a \phi_{i_{\alpha} i_{\alpha} i_{\beta}}\right)\left(b \phi_{i_{\beta}, i_{\alpha} i_{\beta}}\right)\right] \Phi=(a b) \Phi .
\end{aligned}
$$

Thus, Φ is an isomorphism of S onto $\cup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$ and (C3) holds. The rest is obvious.

Conversely, let $T=\left(Y ; S_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$, let S be a spined product of T and B with respect to Y, and assume that S_{i}, D_{i} and $\phi_{i, j}$ are defined by (D1) and (D2). Then by Theorem 2. we obtain that $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$. It is clear that (4) holds. Assume $i, j, k \in B,[i]=[j] \geq[k]$, let $[i]=[j]=\alpha$, $[k]=\beta$, and let $(a, i) \in S_{i}$. Then $(a, i) \phi_{i, j} \phi_{j, k}=\left(a \phi_{\alpha, \alpha} \phi_{\alpha, \beta}, k\right)=\left(a \phi_{\alpha, \beta}, k\right)$ $=(a, i) \phi_{i, k}$. Therefore, (5) holds. Hence, $S=\llbracket B ; S_{i}, \phi_{i, j}, D_{i} \rrbracket$. The rest is obvious.

In the next considerations we will assume that S is a band B of monoids $S_{i}, i \in B$, that B is a semilattice Y of rectangular bands $B_{\alpha}, \alpha \in Y$. For $i \in$ B, let e_{i} denote the identity element of S_{i}. We will give some applications of the previous results to bands of monoids. If $S=\left(B ; S_{i}, \phi_{i, j}\right)$, then it is easy to verify that $\phi_{i, j}$ are uniquely determined by: $a \phi_{i, j}=e_{j} a e_{j}, a \in S_{i}, i, k \in B$, $[i] \geq[k]$. Thus, $S=\left(B ; S_{i}, \phi_{i, j}\right)$ if and only if for every $k \in B$, the mapping $\phi_{k}: F_{k} \rightarrow S_{k}$, defined by $a \phi_{k}=e_{k} a e_{k}, a \in F_{k}$, is a homomorphism. If $\left\{e_{i} \mid i \in\right.$ B] is a subsemigroup of S, then S is a proper band of monoids S_{i}, [11]. If for every $\alpha \in Y,\left\{e_{i} \mid i \in B_{\alpha}\right\}$ is a subsemigroup, then S is a semiproper band of monoids S_{i}. It is not hard to prove that S is a semiproper band of monoids S_{i} if and only if $S=\left(B ; S_{i}, \phi_{i, j}\right)$ and $\phi_{j} \phi_{k}=\phi_{k}$, for $j, k \in B,[j]=[k]$. Also, S is a spined product of a band and a semilattice of monoids if and only if S is a semiproper band of monoids and $a \phi_{j} \phi_{k}=a \phi_{k}$, for all $a \in S_{\alpha}, j, k \in B,[j]=$ $\alpha \geq$ [k]. Using these facts and using Theorem 2 [11], we obtain

Corollary 1. A semigroup S is a strong (proper) band of monoids if and only if S is a spined product of a band and a strong (proper) semilattice of
monoids.
For proper bands of monoids, the previous corollary is proved by F. Pastijn [8].

Corollary 2. $S=\left(B ; S_{i}, \phi_{i, j}\right)$, where S_{i} are unipotent monoids, if and only if S is a spined product of a band and a semilattice of unipotent monoids.

Spined products of a band and a semilattice of cancellative (therefore, unipotent) monoids are considered by R. J. Warne [12] and by A. El-Qallali [3], [4].

Corollary 3. The following conditions on a semigroup S are equivalent:
(i) S is an orthodox band of groups;
(ii) S is regular and a subdirect product of a band and a semilattice of groups;
(iii) S is a spined product of a band and a semilattice of groups.
M. Yamada [13] proved (i) \Leftrightarrow (iii) and M. Petrich [10] proved (i) \Leftrightarrow (ii).

References

[1] M. Ćirić and S. Bogdanović: Sturdy bands of semigroups. Collect. Math. Barcelona, 41 (3), 189-195 (1990).
[2] -: Normal band compositions of semigroups (to appear).
[3] A. El-Qallali: Left regular bands of groups of left quotients. Glasgow Math. J., 33, 29-40 (1991).
[4] —: \mathscr{L}^{*}-unipotent semigroups. J. Pure Appl. Algebra, 62, 19-33 (1989).
[5] J. M. Howie: An Introduction to Semigroup Theory. Academic Press (1976).
[6] J. M. Howie and G. Lallement: Certain fundamental congruences on a regular semigroup. Proc. Glasgow Math. Assoc., 7, 145-159 (1966).
[7] N. Kimura: The structure of idempotent semigroups. I. Pacific J. Math., 8, 257-275 (1958).
[8] F. Pastijn: On Schein's structure theorem on proper bands of monoids. Teor. Polugrupp Prilozh., 5, 82-86 (1985) (Russian).
[9] M. Petrich: Introduction to Semigroups. Merill, Ohio (1973).
[10] -: Regular semigroups which are subdirect products of a band and a semilattice of groups. Glasgow Math. J. , 14, 27-49 (1973).
$[11]$ B. M. Schein: Bands of monoids. Acta Sci. Math. Szeged, 36, 145-154 (1974).
[12] R. J. Warne: TC semigroups and related semigroups. Workshop on semigroups, formal languages and combinatorics words (August 29-31, 1992), Abstracts, pp. 130-132.
[13] M. Yamada: Strictly inversive semigroups. Bull. Shimane Univ., 13, 128-138 (1964).
[14] -: Inversive semigroups. III. Proc. Japan. Acad., 41, 221-224 (1965).
[15] -: Regular semigroups whose idempotents satisfies permutation identities. Pacific J. Math. , 21, 371-392 (1967).
[16] M. Yamada and N. Kimura: Note on idempotent semigroups. II. Proc. Japan Acad., 34, 110-112 (1958).

[^0]: *) Supported by Grant 0401A of RFNS through Math. Inst. SANU.

