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Spined products of semigroups were first defined and studied by N.
Kimura, 1958, [7]. After that, spined products have been considered many a
time, predominantly those of a band and a semilattice of semigroups with re-

spect to their common semilattice homomorphic image. Spined and subdirect
products of a band and a semilattice of groups are studied by M. Yamada
[13], [14], J. M. Howie and G. Lallement [6] and by M. Petrich [10]; spined
products of a band and some types of semilattices of monoids are studied by
F. Pastijn [8], A. E1-Qallali [3], [4], and by R. J. Warne [12]. For other consid-
erations of these products, we refer to [4], [5], [7], [9], [15]. In the quoted pap-
ers, spined products are considered in connection with some types of bands
of semigroups. In this paper, we give a general composition for bands of
semigroups that are (punched) spined products of a band and a semilattice of
semigroups. This composition, in some sense, is a generalization of a
well-known semilattice composition (see Theorem III 7.2. [9]).

Let B be a band. By --<1 and N we denote quasi-orders on B defined
by i < je* ij j, i <,.j <:> ji j, and by _< we denote the natural order on
B defined by "i _< j means that i <--lJ and <--2j". For i B, we will denote
by [i] the class of an element i in the greatest semilattice decomposition of a
band B (so [i] is an element of the greatest semilattice homomorphic image
of B). If S is a band B of semigroups S, i B, then for k B, F will de-
note the semigroup F, U{SIi B, [i] _> [k]}. If 0 is a homomorphism
of a semigroup S into a semigroup S’, and if T is a common subsemigroup of
S and S’, then 0 is a T-homomorphism if aO a, for all a T. A subsemi-
group T of a semigroup S is a retract of S if there exists a homomorphism 0
of S onto T such that aO a, for all a T. We call such a homomorphism
a retraction. If T is a subsemigroup of a semigroup S, then we say that S is
an oversemigroup of T. If p is a congruence on a semigroup S, then we denote
by pl the natural homomorphism of S onto S/p. If P and Q are two semi-
groups having a common homomorphic image Y, then the spined product of P
and Q with respect to Y is S {(a, b) P x Q lao bb}, where qo P--+ Y
and b: Q-+ Y are homomorphisms onto Y. If Y is a semilattice and P and Q
are a semilattice Y of semigroups Pa, C Y, and Qa, c Y, respectively,
then the spined product ofPand Qwith respect to Yis S UarPa Qa.
A subsemigroup S of a spined product of semigroups P and Q with respect
to Y, that is also a subdirect product of P and Q, is a punched spined product

ofP and Q with respect to Y
*) Supported by Grant 0401A of RFNS through Math. Inst. SANU.
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For undefined notions and notations we refer to [5] and [9].
Lemma 1. Let B be a bang. To each B we associate a semigroup Si

and an oversemigroup Di of S such that D D 0, if i :/: j. For i, j B,
[i] >- [j], let , be a mapping of S into Di and suppose that the family of ,
satisfies the following conditions"

(1) q, is the identity mapping on S, for every i B"
(2) (Si,)(S,) S, for all i, j B"
(8) [(ai,)(b,)], (a,,)(b,), for a Si, b S, [ij] >_ [k], i, j,
kB.
Define a multiplication $ on S U BS by" a $ b (a,)(b,), for a
S, b S. Then S is a band B of semigroups S, i B, in notation S- (B
Si, ,, D).

Proof. Assume a S, b S, c S, i,j, k B. Then by (3) we
have

(a b) * c (a,i) (b,) c (ai,i) (b,) ,k(CCk,ik)
(ai,,,) (b,i,) (c,i) (ai,ie) [(b,) (c,,,)],,
a $ (bCj,jk) (Ck,1k) a $ (b $ c).

Thus, S is a semigroup. Clearly, it is a band B of semigroups Si.
If we assume i-j in (3), then we obtain that i,k is a homomorphism,

for all i, k B, [i] _> [k]. If Di= Si, for each i B, then we write
S (B Si, i,). Here the condition (2) can be omitted.

Theore 1. Let S be a band B of semigroups S, i B. Then
(a) S (B Si, o, Di) if and only if for every k B there exists an over-
semigroup D of Sk and an Sk-homomorphism of Fk into Dk"
(b) /f S (B Si, ,, D), then we can assume that Dk {ai,kl a Si,
[i] -> [k]}, for each k B"
(c) S (B Si, io) /f and only if for every k B, Sk is a retract of Fk.

Proof (a) If S (B;Si, ,, Di), then for k B, the mapping

Ok’Fk---* Dk defined by: aOk ai,k, for a Si, [i] _> [k], is an
Sk-homomorphism.

Conversely, suppose that for every k B there exists an oversemi-
group Dk and an S,-homomorphism Ok of Fk into Dk. For i, j B, [i] _>
[j], define a mapping i, of Si into D by: ai, aO, a Si. It is clear
that (1) holds. Let a S, b S, i,j B. Then a, b F, ab S,
whence (ai,i)(b,i) (aOi)(bOi) (ab)Oi ab. Let k B, [ij] >- [k].
Then (ai,i) (b,i) i,k (ab) O (aOk) (bOk) (ai,) (b,k). Thus,
S- (B ;S, ,, D).

(b). In notations from (a), for k B, {ai,,la Si, [i] _> [k]}
F, and it is a subsemigroup of D. Clearly, every one of the conditions
(1)-(3) of Lemma 1 holds for D if and only if it holds for F. Thus, (b)
holds.

(c) This follows by (a).
If B is a semilattice, then S (B;S, ,, Di)is a semigroup con-

structed as in Theorem III 7.2. [9]. In this case, for each k B, S is an
ideal of F, so using well known results from the theory of ideal extensions
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of semigroups, in Theorem III 7.2. [9] was proved that every semigroup S that
it a semilattice Y of semigroups Sa, ee Y, can be composed as S (Y Sa,
Ca,,, Da), and, furthermore, each D can be chosen to be a dense extension of Sa
and that D {b,, t9 > a, b S,}. This fact will be used in the next con-
siderations to representing a semilattice of arbitrary semigroups.

Also, we will give another construction. If S (B ;Si, i,, Di) and if

(4) Sii, - S, for [i] [j], i, j B"
(5) i,,g i,, for [i] [j] --> [k], i, j, k B;
then we will write S-- liB ;Si, i,, Di]]. If S (B ;Si, i,) with (4) and
(5), then we Write S [[B ;S, ,]]. If S (B ;Si, ,) and if {i, i, J

B, [i] _> [j]} is a transitive system of homomorphisms, i.e. if i,y, i,g,
for [i] --> [j] --> [k], then we will write S [B ;Si, i,].

Let B be a band. To each i B we associate a semigroup S such that

Si S 0 if i 4: j. Let tp, and b, be homomorphisms of Si into S de-
fined for i _>j and i _>j, respectively, such that:
(6) for every i
(7) qi,0,k 0i,k, for i --1 J --1
(8) ,, ,, for i j
(9) i,, i,,, for i
Define a multiplication * on

is the identity mapping on Si;
k;
k;
j,i>_,k.
S t3 iBSi by: a * b (agi,ij) (bj,il), for

a S, b S, i,j B. Then by [11] S is a band B of semigroups S, i
B. This construction is introduced by B. M. Schein [11], and it has been ex-
plored by the authors in [1], where it is denoted by S [B;S, p,,
,] and called a strong band of semigroups S. It is easy to prove the follow-
ing lemma"

Lemma 2. If S-- [B S, qbi,j], then S [B Si, p,, q),], where p,
i,, for >_j, and bi, c/)i,, for >zJ. Conversely, if S [B Si, qgi,,

d2i,], then S [B Si, i,j], where i,y Pi,ii,, for [i] _> [j].
Therefore, the constructions [B;Si, qgi,, i,y] and [B;Si, i,y] are

equivalent. So [B Si, i,j] will be called a strong band of semigroups Si. If B
is a semilattice, then we obtain a well known strong semilattice of semigroups.

The following lemma is proved by B. M. Schein [1 1], in the case when Si
are monoids, and it is immediate to extend this proof to the general case.

Lemma 3. Let B be a rectangular band.

If S [B Si, i,], then each i,, is an isomorphism of Si onto S, i, j
B, and for every k B, the mapping 0 of S into S B defined by aO-
(ai,g,i), for a S, i B, is an isomorphism.

Conversely, if S- T B, if we assume that S T {i}, i B and if
we assume that i, is a mapping of S into S, i, j B, defined by (a, i)i,
(a, j), a Si, then S [B Si, i,j].

Theorem 2. Let a band B be a semilattice Y of rectangular bands Ba. If S
(B ;Si, ,, D), then

(A1) S is a semilattice Y of semigroups Sa (Ba Si, i,, Di), o Y
(A2) a relation p on S defined by" apb if and only if a Si, b S, [i]
[1"] a, and a,, b, for all k B, ce >_ [k], is a congruence on S and T
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S/p is a semilattice Y of semigroups Ta Sap
(A3) S is a punched spined product of T and B with respect to Y.
Conversely, if S is a punched spined product of T- (Y; T., ,, D.) and B
with respect to Y and if we assume that"
(B1) S- (T. x {i}) Cl S, D D. x {i}, for i e B.;
(B2) for i, j B, [i] >_ [j], a mapping , of S into D is defined by"

(a, i)qS,- (aqSil,1, j);
then S- (B S, qb,, D).

Proof. Let S (B ;S, q,, D). Then it is clear that (A1) holds.
(A2) It is clear that p is an equivalence relation. Assume that apb and

x S. Let a S, b S, i,j B, a Yand let x S, kB, f Y.
Then ax S, bx S, ik, jk B. Assume B, aft [. Then a
[/], so a, b,. By (3) we obtain that

(ax), (a,) (x,,,) , (a,) (x,) (b,,) (x,)
(b,) (x,) , (bx),.

Thus, axpbx. Similarly we prove that xapxb. Therefore, p is a congruence.

Let a be a semilattice congruence on S determined by the partition {Sa ]
Y}. Then p a, so T- S/p is a semilattice Y of semigroups Ta Sap

(A3) Let be the band congruence on S determined by the partition

{Sii B}. Clearly, p - , where is the equality relation on S, so S
is a subdirect product of T and B, where a one-to-one homomorphism of
S into T B is given by a-- (ap, a), a S. Assume a S. Let a
Si, i Ba, Then a Sa, so ap Ta, and a= i Ba. Thus,
SO G U arTa x Ba, so S is a punched spined product of T and B.

Conversely, let T- (Y T., ,, D.), let S be a punched spined pro-
duct of T and B and let Si, Di and i, be defined by (B1) and (B2). Then it
is not hard to verify that S (B Si, ,, Di).

Theorem 3. Let a band B be a semilattice Y of rectangular bands Ba. If S
B ;Si, ,, D, then

(C1) S is a semilattice Y of semigroups Sa [Ba S, i,], a Y
(C2) each Sa is isomorphic to Ta x Ba, where Ta is a semigroups isomorphic to
each Si, i Ba"
(C3) there exists a semilattice composition T (Y; T, ,, D.) such that S
is isomorphic to the spined product of B and T with respect to Y. Furthermore, if
S B ;Si, , (S- [B ;Si, ,]), then T can be chosen to T (Y T.,
$.,e) (T- [Y T., .,e]).
Conversely, if S is a spirted product of T (Y Ta, ,, D) and B with re-

spect to Y and if we assume that"
(D1) S-- T. x {i}, D=D. x {i},bri B"
(D2) br i, j B, [i] [j], a mapping i, of S into Di is defined by"

(a, j),,- (a,,, j)
then S- B Si, i,, Di. Furthermore, if T- (Y Ta, Sa,e)(T [Y; Ta,
,e]), then S- B S, i, (S [B Si, $i,]).

Proof By (5) and by Lemma 3 it follows that (C1) and (C2) hold.
For any a fix 0a Ba, and assume that Ta So., Da Do.. For
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or, /3 Y, cr _> fl, define a mapping ,e of T into De by ,e o,%. It is
clear that Ca,a is the identity map of Ta, for any a Y. Assume a, fl Y,
a Ta, b Te. Then by (3) we have that

(a,.a) (b,,.,) (a%,%) (boa,o.a) (ao.,%%) (boa,o.%) o.%,o.,
so by (2) and (4) we obtain that (aCa,a) (b,,a) So. Ta, whence it fol-
lows that (TaCa,a,)(T,,,a,) E Ta,. For 7 Y, aft 7, by (3) and (5)

(a.,.e) (b,,.,) ,,r (ao.,o.) (b%,o.) o.,o
(ao.,o.oa) (boa,o.%) ooa,%o,o (ao.,%%) (b%,o.%)
(ao,o) (boa,o) (aCe,r) (b,,r).

Thus, by Lema 1, there exists a semilattice composition S (Y T, ,,
Define a mapping of S into T B by: a# (a,o, ia), if a S,

ia Ba, Clearly, S# UafTa Ba. Since i,o is an isomorph-
ism of Si onto So (by Lemma 3), then # is a bijection of S onto UyT
Ba.

Assume a Si, b Sia, ia Ba, i, Bz, , fl Then by (5) and
(3)
(a) (bO) (a,%, i) (b,,0, i,) ((a,%,) (b,,%,,,), ii,)

((a,oo,o) (b,%o,o), ii,) ((a,o) (b,o), ii,)
([(a,,) (b,)]%,iiz) [(a,) (b,,)] (ab) .

Thus, is an isomorphism of S onto U yT Ba and (C3) holds. The rest
is obvious.

Conversely, let T (Y ;Sa, Ca,,, Da), let S be a spined product of T
and B with respect to and assume that S, D and , are defined by (D1)
and (D2). Then by Theorem 2. we obtain that S- (B;S, ,, D). It is
clear that (4) holds. Assume i, j, k B, [i] [j] [k], let [i] [j] ,
[k] -, and let (a, i) S. Then (a, i),, (aCa,aCa,z k) (a,,, k)

(a, i),. Therefore, (5) holds. Hence, S B ;S, ,, D. The rest is
obvious.

In the next considerations we will assume that S is a band B of monoids
S, B, that B is a semilattice Y of rectangular bands B, For i
B, let e denote the identity element of S. We will give some applications of
the previous results to bands of monoids. If S (B S, ,), then it is easy
to verify that , are uniquely determined by" a, eae, a S, i, k B,
[i] [k]. Thus, S (B S, ,) if and only if for every k B, the mapping
F S, defined by a eae, a F, is a homomorphism. If {e i

B} is a subsemigroup of S, then S is a proper band of monoids S, [1 !]. If for
every a Y, {e] i B} is a subsemigroup, then S is a semiproper band of
monoids Si. It is not hard to prove that S is a semiproper band of monoids S if
and only if S (B S, ,) and , for j, k B, ’] [k]. Also, S
is a spined product of a band and a semilattice of monoids if and only if S is a
semiproper band of monoids anda a, for all a S, j, k B, [j]

[k]. Using these facts and using Theorem 2 [11], we obtain
Corollary 1. A semigroup S is a strong (proper) band of monoids if and

only if S is a spined product of a band and a strong (proper) semilattice of
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monoids.
For proper bands of monoids, the previous corollary is proved by F.

Pastijn [8].
Corollary 2. S-" (B Si, i,i), where S are unipotent monoids, if and

only if S is a spined product of a band and a semilattice of unipotent monoids.

Spined products of a band and a semilattice of cancellative (therefore,
unipotent) monoids are considered by R. J. Warne [12] and by A. E1-Qallali

[3],[4].
Corollary 3. The following conditions on a semigroup S are equivalent:
S is an orthodox band of groups;

ii S is regular and a subdirect product of a band and a semilattice of groups;
(iii) S is a spined product of a band and a semilattice of groups.

M. Yamada [13] proved => (iii) and M. Petrich [10] proved =
(ii).
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