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Introduction. Let p be an odd prime, F, be the finite field with p
elements and X be a character of order [ of the multiplicative group F;.
Consider a Jacobi sum

J= 2 x@xQ—x), x© =o0.
zeF,
Obviously J is an integer in the /th cyclotomic fieid k;. By machine computa-
tion, the older author observed that @ (/) = k, for small p and [ In this
paper, we shall prove a theorem which explains (more than enough) the
observation.

§1. The group G (p). For a positive integer m, let {, be a primitive
mth root of 1, k,, = Q({,,) and o,, = Z[{,]. For a prime ideal p of 0,, such
that p & m, let x,(x) = (x/p),,, the mth power residue symbol, £ € o,,, p &
z, i.e., x,(x mod p) is the unique mth root of 1 such that

(1) X,(x mod p) =z 7 S, (modp),
where ¢ = p = Np is the cardinality of o, /p. One sees that X, is a charac-
ter of (o, /p) of order m. We put x, (0) = 0. As a nontrivial additive char-
acter of o,,/p = F,, we adopt the fllI‘lCthl’l ¢,(x) = {,T(x), where T is the
trace map from F, to F,.

Consider the Gauss sum
(2) gp) = 2 x,@¢,(¥) € o,

Z€0,/p

Note that k,, = k,k,, k,, N k, = Q; hence we can identify two Galois
groups G (k, /Q) and G(km,,/k ). For an integer ¢ with (¢, m) = 1, we
denote by o, the element of G(k,,/Q) = G(k,,/k,) such that §,' = {,,. We
denote by g, the group of #th roots of 1. For a number field K, we denote
by u(K) group of roots of 1 in K. For the cyclotomic field k,, = Q(u,,), we
know that u(k,,) = u,, or f,, according as m is even or odd.

Consider the group

(3) Gp) ={0,€Gk,/Q ;g "€ uk,)}.
For u € F,, put
) A= T(% u Xp(x)

One sees easily that

(5) A, = x,(wA,, foru+0.

From (2), (4), (5), we have

(6) g = X AL =A,+ A, Z X, (W Cy.
uer

Since 1 = — X ¢, (6) implies that
u#0
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(7) glp) = ZO (x,(wA, — A) C.

Since {C,, «zo i linearly independent over k,,, it follows from (3), (7) that
(8) G = {0, € Gk,/Q; (x,wA, — "a)" = a,(x, (WA, — Ay,
a, € u(k,) for all u € F,}.

If, in particular, f =1, i.e., ¢ = p, then A, =1, A, = 0, and the condition
(8) boils down to
(9) xp(u) "=a, x,(w), for all u € F;.
Putting # = 1 in (9), we get @, = 1, hence x,@)” = xp(u) = x,(u) for all
u € Fp , i.e., , = 1. Therefore we conclude that
(10) G = {1} iff=1.

§2. The Jacobi sum J,(p). Notation being as in §1, assume that m > 1;
hence X, is nontrivial. From (1) one sees that

(11) X, (@”) = x,(@)°, forall o € Gk, /Q).
For a natural number # such that (n m) = 1, we put
(12) T, = g /gm™ = gp)” ™.
Notice that J,(p) is a special case of the Jacobi sum of # variables
(1 3) .I(al ..... ay) (p) - Z X;l (1'1) e XZ” (xn)’
Zy+...+ZTp=1
T1€0,/p
where a; € Z; the relation (12) is a consequence of
(14) gal (p) e ga,,(p) .,(al ..... ay) (p)ga1+ tay, (p),
which holds whenever a;,, 1 =i =#, and @, + ... + a, are all # 0(mod
m).Y Needless to say, we have set in (14),
(15) g = = x,¢,@, t€Z.
TE€0,,/p

From (13) we see that J,(p) = Jo. .1 (p) is in 0,. We are interested in the
subfield Q(J,(»)) of k,,.

Proposition 1. Q(J,(p)) is contained in the decomposition field of p.

Proof. From (11), (13), it follows that J, (0°) = J, (p)° for any o €
G(k, / Q). In particular, we have J,(p) = J,(0)° if p = p°. Q.ED.

Proposition 2. Ifp # 2 and n £ 1(mod p) , then Q(J,(p)) contains the
fixed field of the group G(p) defined by (3).

Proof. Let 0= o, be an element of G (k,/@Q) such that J, (ﬁ)a =
J,(p). Then we have (g(»)"™ ™% = g(p)"™™, so gt(P)n =g

(16) a) = a* with a, = g,(p)/g(p)

Since G(k,, /@) is of order ¢(m), (16) implies that

(17) " — o, = a,(@*™ T = 1) = 0. o
Since a, # 0, (17) implies that a, € u(k,,,). Hence we have a, = + ¢, ¢, 4,
j € Z. In view of (16), we have (£ 1)" ¢, ¢ =+ ¢ ¢, or cz’” =7,
Since p # 2 and # % 1 (mod p), we have j = O (modp), so a, = £, €

u(k,,) ; in other words, we have g(p)'~" € u(k,), ie., 0, € G(p). QE.D.

D As for basic facts on Gauss sums and Jacobi sums, see, e.g., a beautifully writ-

ten textbook [1].
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The following Theorem follows from (10) and Propositions; it justifies
the observation more than enough.

Theorem. Let k,,, m > 1, be the mth cyclotomic field, p an odd prime, p X
m, n a positive integer such that (n, m) =1 and n Z 1 (mod p). Let p be a
prime ideal in k,, such that p|p. Let J,(p) be the Jacobi sum defined by (12) (or
by (13) with a;, = 1,1 = ¢ = n). Then k,, = Q(J,(0)) if and only if p splits
completely in k,, i.e., p = 1(mod m).

Remark. Notation being as in Theorem, consider the group

(18) G(J,») =o€ Gk, /Q ; ], = J,(®}.
Proposition 1 means that
(19) G(J,») 2 Z(p),

where Z (p) is the decomposition group of p. On the other hand, Theorem
means that

(20) GU,m) =1y o Zp) = {1}.

Therefore we do not have yet a complete knowledge about the field
Q(J, () when Z(p) # {1}, ie., when f > 1. Here is an illustrative example.
Let m = 5. Hence ¢ (m) = 4 and only possible f > 1 are f = 2 and f = 4. If
f=4,then Z(p) = G(J,(»)) = G(ks;/Q), no problem. If f = 2, the decom-
position field of p is k', the maximal real subfield of k. Since J,(p) is con-
tained in the decomposition field of p by (19), we have J, (p) € R. Now,
since J, ®* =[], [ = (Wp)"™ = p**7", we have J,(p) = £ p"' € @;
hence G (J,(®)) = G(k,/Q) ¥ Z(p). Let n = 6 (with m = 5, still). Then
Js@) = g% = g(p) ™ = g(p)°. Hence g(p)’ € Q, but the decomposi-
tion field of p is ks #+ Q.7
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2 This provides us with counterexample to Exercise 10, p.226 in [1].



