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Large-time Existence of Surface Waves
of Compressible Viscous Fluid

By Naoto TANAKA *) and Atusi TANI * *)

(Communicated by Kiy0si IT6, M.J.A., Sept. 13, 1993)

1. Introduction and theorem. In this communication we are concerned
with free boundary problem for compressible viscous isotropic Newtonian
fluid which is formulated as follows" Find the domain Qt C Ra occupied by
the fluid at the moment t > 0 together with the density p(x, t), velocity vec-
tor field v(x, t) (v1, v2, v3) and the absolute temperature O(x, t)
satisfying the system of Navier-Stokes equations

Dp Dv+ p(lT.v) O, p-- I7.P- pge3,

DO(1.1)
pCv--D- q- Opo( V’v) V" (x V O) -t-

(x E2, (x" (xl, x2) R2, b(x’) < x3 < F(x’, t)} t > O)
and the initial and boundary conditions

<o, v, o)I,_-o- (Oo, Vo, Oo) (x #o),
Pn= --pen+ aHn, lTO.n= e(Oe-- O)

(x F, {x’ R, x F(x’, t) }, t > O),
(1.2)

xa b(x’)}, t > 0),

Fit__0 Fo(x’) (x" R).

v=0, 0- 0 (x 2 {x’R
D
-(xa-F) =0 (xr,, t>O),

Here I7 xl ;17’ (lT1, I7)

+ (v" 17) is the material derivative; P (-- p +/’( 17. v))l + 2pD(v)
Pl + V is the stress tensor; I is the 3 x 3 unit matrix; D(v) is the veloctiy

deformation tensor with the elements Di-- \Ox + Oxil’
(IT.v)

-+- 2pD(v):D(v) is the dissipation function; p p(p, O) is the pressure
with pp, Po > 0; (p, p’, x, Cv)(p, O) are, respectively, coefficient of viscos-
ity, second coefficient of viscosity, coefficient of heat conductivity, heat
capacity at constant volume, which are all assumed to be known smooth
functions of (p, 0) satisfying , , Cv > 0, 2p + 3p’ >-- 0; (g, a, Pe, Ke)
are, respectively, acceleration of gravity, coefficient of surface tention, atmos-
pheric pressure, coefficient of outer heat conductivity, which are all assumed

1 t( VF,to be positive constants’e (0, O, 1)
vii + V’F [2
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/

172F 1)is the exterior unit normal vector to Ft’H- P"" {( )
is the twice mean curvature of/’t.

We seek a solution of the problem (1.1)-(1.2) near the equilibrium rest
state (p, v, 0, F) (tS, 0, , 0), where is any positive constant and t5--
tS(x3) is determined by

(a-x) po(7, O)
(1.3)

a(o)

We rewrite the problem (1.1)-(1.2) by changing the unknown functions
(p, v, 0, F) -- (p + tS, v, 0 + , F) and by using (1.3) as follows"
(.4), + (v.v)(p + t) + ( + )(7.v) o,

(O+fi) (v,+ (v.V)v) IT. V- pITo poITO + ( o) 0 gea,

(o+ g)c(O+ (v.g)O) + (0+ O)o(g.v)= .(0) + (z&, t>O),
(1.5)

(o, v, o)I,=o (po, Vo, Oo)(x) (x e 90,
2pHD(v) O, (p--p) + Vn’n= all,
tcVO’n= (0-- O) (x It, t > O), v=O, O- O, (x , t > O),

F, + vgF + vF’F- v3 0 (x F,, t > 0), F[,= Fo(x’) (x’ R).
where p I9(0 + , 0 + 0), o Po(, O) etc., and IIp 0 n(n’o).

Let W2(.Q)(I > O, Rn) be the S.L. Sobolev-L. N. Slobodetski[
spaces. We denote the anisotropic spaces W’t/2(Qr) (Qr -Q x (0, T)) of
functions defined on Qr by L2(O, T;W(D)) L(D; W2/Z(O, ).

Transforming the problem to the initial domain 0 by the relation

(1.6) x

where (, 0 is the velocity vector field in Lagrangean coordinate system,
we can establish temporarily local solvability of the problem (1.4)-(1.5) in
the same way as in [4 ].

Theorem 1.1 (local existence). Let b W/2+(R) with (1/2, 1).
For arbitrary Vo, Vo, Oo
0a W/+’/4+/(r), satisfying Po+f > O, 0o+ O> O, 0e+ O> O, 0a
+ 0 > 0 and the natural compatibility conditions (we omit them here) the prob-
lem (1.4)-(1.5) in Lagrangean coordinate system has the unique solution (,
O) (, t) defined on Qr,
W]+"+’/Z(Qr,), , 0 e W+"an+’/e(Q,) and

(1.7)

The number 71 increases unboundedly as Eo,r tends to zero. Moreover, the solu-
tion possesses some additional regularity with respect to t"
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sup + c(Eo, + +(Q))
t<t<T

for any t > O, t T.
The following is our main theorem.
Theorem 1.2 (global existence). Under the assumptions of Theorem 1.1, f

Eo Eo, t with sufficiently small number , then the problem (1.4)-(1.5)
has the unique solution (p, v, O, F) for all t 0 satisfying
(1.9) sup ( p [w+,(,) + (v, O) ]w+,(, + F []w+,() cEo

tt
with each tl > O.
Similar result was established for barotropic fluid bounded only by a free
surface in[ 3 ].

2. Proof of Theorem 1.2. Theorem 1.2 is proved by combination of the
local existence theorem and the a priori estimate. To state the a priori esti-
mate, it is convenient to make use of the coordinate transformation mapping
from t onto the equilibrium domain {y’ R, b(y’) < ya < 0}
defined by

where is the extension of F to R+ (see [1]). Let us put if(y, t)
f (x(y,t), t) and

Theorem 2.i (a priori estimate). Let (p, v, O, F)be the solution of
(1.4)-(1.5) defined on 0 < t < T. If Eo, < and +(Or) < 6 with suffi-
ciently small , , then the following a priori estimate holds"

(2.2) +(Or) c4Eo, r.

Proof of Theorem 1.2. Let Eo be so small that the problem (1.4)-(1.5) in
Lagrangean coordinate system is solvable on the interval (0,1). Such a solu-
tion satisfies inequalities (1.7), (1.8) or T 1. Furthermore, (2.2) with
T 1 is valid provided that Eo < and cEo 6. Combining these ine-

qualities, we find that E csEo (E is the norms of the data at t 1). In-
troducing new Lagrangean coordinate system and again applying
Theorem 1., we can establish the solvability of the problem for t (1,2)
provided that Eo is sufficiently small. Repeating this process infinitely many
times, we arrive at the assertion of the theorem.

3. A priori estimate. First we rewrite the system (1.4)-(1.5) so that all
the nonlinear terms appear in the right hand side of equations and next
make transformation to the equilibrium rest domain and linearize it again.
Then we finally obtain

+ + =L,

(3.1)
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, 0)[--o- (ro, o, 0o)() o. ,
r7 \y +/ .:o

’F(@)(g)(f, ) + fi’(V.) + 2fi aV -F -A,
(3.2) .:o

e+ O 0+ o
-0, O= 0, on Nr,

’(g" )I + 2 (), ; =..0ap((z), 0)o and f= {where P=
(i 1,...,8)} are at least quadratic tunctons of (, , O, F) and their first
and second derivatives. The estimate of the linearized roblem (.1)-(.2)
with given f reads as follows.

Letup, .1. Let b W/+ with l (i/2,1), o, o, 0o W2+(),
Fo W/z+t (Rz), W)+t’x/z+’/z(Or), A, i W"/Z(OT), A+, L, f7

w2iZ+t’3i4+tiz( T) and the compatibility conditions are satisfied. Then ior the
problem (3.1)-(3.2), we have the estimate

"2 "r’ Wz (Rx)

(3.3)

Proof of Theorem 2.1. We first apply (3.3) to the problem (3.1)-(3.2)
and establish the a priori estimate for lower order terms. For the derivatives
of highest order, we appeal to the energy method as in 12,31. The details will
be published elsewhere.
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