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§1. Introduction. We recall from [1] and [3] that

(1) a monoid M is left [right] absolutely flat if any left [right] M-set is
flat, and it is absolutely flat if it is a both left and right absolutely flat, and

(2) a monoid M is strongly left [vight| reversible if for any x,y € M,
there exists 2 € M such that zr = x and zy € xM N yM |[respectively,
xz = x and yz € Mx N My), and it is strongly reversible if it is both left and
right reversible.

Let S be a semigroup and S' the monoid obtained by adjoining a new
identity 1 if S does not have an identity. Following [1], we say that a semi-
group S is [left, right] absolutely flat if S' is a [left, right] absolutely flat
monoid. Similarly, we say that a semigroup S is [left, right] strongly reversible
if S'is a [left, right] strongly reversible.

In [3], Bulman-Fleming and McDowell proved that the multiplicative
semigroup of any semi-simple Artinian ring is strongly reversible. This
gives an impulse to us for proceeding to our result stated below.

Theorem. Let R be any ring. Then the following are equivalent:

(1) R is a Von Neumann regular ring.

(2) The multiplicative semigroup of R is strongly reversible.

(8) The multiplicative semigroup of R is absolutely flat.

Our proof of the theorem is simple and just a combination of a few basic
facts concerning idempotents of regular rings.

A semigroup S is called a semigroup amalgamation base if for any family
{T,|i € I of oversemigroups T; of S, there exists a semigroup V in which
each T, is embedded with the property that intersection of every pair of T,
and T; (i # ) in Vequals S.

It is well-known that absolutely flat semigroups are semigroup amal-
gamation bases (see [2]).

Here we have

Corollary. The multiplicative semigroup of any Von Neumann regular ring
1s a semigroup amalgamation base.

§2. A proof of theorem. In their paper [2], Bulman-Fleming and
McDowell introduced V. Fleischer’s characterization of absolutely flat
monoids and pointed out that every strongly reversible monoid is absolutely
flat. Thus the implication (2) = (3) of Theorem is obtained. It follows from
Kilp’s theorem [5] (or [1, Proposition 2.5]) that every absolutely flat monoid
is regular. Then the implication (3) = (1) is proved. Therefore it suffices to
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prove the implication (1) = (2).

Proof of the implication (1)= (2). Let R be a regular ring. We shall
show first that the monid R' is strongly left reversible. Let x, y € R If
x=1, then lx=x,ly€zR'NyR' If xER,y=1, then by [4,
Theorem 1.1 (b)], there exists an idempotent ¢ € R with eR = xR, such that
ex =x, ey € zR' N yR'. Thus we can assume that £, y € R. Then by [4,
Theorem 1.1(b)], there exist idempotents ¢, f € R such that zR' = ¢R, yR'
= fR. On the other hand, by [4, Lemma 2.2}, the right ideal ZR' N yR' is
finitely generated and, again, by [4, Theorem 1.1(c)], there exists an idempo-
tent f, € R such that xR' N yR' = f,R. Put f, = f — f,f Then it is easily
seen that f, is an idempotent and eR N f,R = 0. By [4, Theorem 1.1(c)],
there exists an idempotent # € R such that xR + yR = hR. Since ¢eR D f,R
= zR' + yR’, there exist s, t € R such that es + fot = h. Then e = he =
ese + f,te. This implies that e = ese, since eR N f,R = 0. Hence es is an
idempotent and esR = zR'. Similarly we get f, = esf, + f,tf,, which implies
esf,=0. Put z=es. Then zx = (es)(ex) = ex = x and zy = (es) (fy) =
(es) (fif + £y = es(f,f)y = es(ef)fy = f,(fy) € zR' N yR', as required.
Hence R is strongly left reversible. By symmetry, it is shown that R is
strongly right reversible, and strongly reversible. Therefore the implication
(1)=(2) is proved.

Remark. In the latter part of the proof of the implication (1) = (2), it is
shown that for idempotents e, f, of a regular ring R with eR N f,R = 0,
there exists an idempotent z such that ze = e, zf, = 0. This was already
suggested by Utsumi [6, Section 3, p. 159].
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