6. On Ono's Problem for Quadratic Fields

By Masaki KOBAYASHI
Department of Mathematics School of Science, Nagoya University
(Communicated by Shokichi IYanaga, M. J. A., Jan. 12, 1993)

For a quadratic number field k, we shall denote by d_{k}, h_{k} and χ_{k}, the discriminant, the class number and the Kronecker character of k, respectively. Let M_{k} be the Minkowski constant of k :

$$
M_{k}= \begin{cases}\frac{1}{2} \sqrt{d_{k}} & \text { if } k \text { is real } \\ \frac{2}{\pi} \sqrt{-d_{k}} & \text { if } k \text { is imaginary }\end{cases}
$$

For the following finite sets of rational prime numbers:

$$
\begin{aligned}
& S(k)=\left\{p, \text { rational prime } ; p \leq M_{k}\right\} \\
& S_{1}(k)=\left\{p \in S(k) ; \chi_{k}(p)=-1\right\} \\
& S_{2}(k)=\left\{p \in S(k) ; \chi_{k}(p)=0\right\} \\
& S_{3}(k)=\left\{p \in S(k) ; \chi_{k}(p)=1\right\}
\end{aligned}
$$

we shall define the following three families of quadratic fields by

$$
K_{i}=\left\{k, \text { quadratic field } ; S(k)=S_{i}(k)\right\}(i=1,2,3)
$$

It follows from Minkowski's theorem that the ideal class group of k is generated by the classes of prime ideals β lying on p in $S(k)$. Therefore if $S(k)=S_{1}(k)$ holds, then $h_{k}=1$. When k is imaginary, it is easy to prove that $h_{k}=1$ holds if and only if $S(k)=S_{1}(k)$. In the relation with conjecture of Gauss on the class number of real quadratic fields, it is interesting to determine K_{1}. Leu and Ono determined K_{2} and K_{3} in [2], [5] as follows:

$$
\begin{aligned}
K_{2}= & \{Q(\sqrt{m}) ; m=-1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 7,13,15, \pm 30\} \\
K_{3}= & \{Q(\sqrt{m}) ; m=-1, \pm 2, \pm 3,5,-7,13,-15,17,-23,33 \\
& -47,-71,73,97,-119\}
\end{aligned}
$$

Moreover Leu determined K_{1}, with one possible exception in [1]:

$$
\begin{aligned}
K_{1}= & \{Q(\sqrt{m}) ; m=-1, \pm 2, \pm 3,5,-7,-11,13,-19,21,29 \\
& -43,53,-67,77,-163,173,293,437\}
\end{aligned}
$$

Remark 1. Under the assumption of GRH (the generalized Riemann Hypothesis), we can determine K_{1} without any exception.

Consider the finite set of prime numbers such as

$$
S_{0}(k)=\left\{p \in S(k), \chi_{k}(p) \neq 1\right\}
$$

If h_{k} is odd and $S(k)=S_{0}(k)$, then $h_{k}=1$ holds. The condition that h_{k} is odd and $S(k)=S_{0}(k)$ is weaker than $S(k)=S_{1}(k)$. Our purpose is to determine the family K of all fields k satisfying that h_{k} is odd and $S(k)=$ $S_{0}(k)$ under the assumption of GRH.

Theorem 1. If GRH holds, then there are exactly 42 belonging to K :

$$
K=\{Q(\sqrt{m}) ; m=-1, \pm 2, \pm 3,5,6, \pm 7, \pm 11,13,14,-19
$$

$$
21,23,29,38,-43,47,53,62,-67,69,77,83,93,-163
$$

$167,173,213,227,237,293,398,413,437,453,717,1077$, $1133,1253\}$.
For real $k=Q(\sqrt{m})$ belonging to K, by the genus theory, there are three different cases as follows:

$$
m= \begin{cases}p_{1}, & \\ 2 p_{1} & ; p_{1} \equiv 3(\bmod 4) \\ p_{1} p_{2} & ; p_{1} \equiv p_{2} \equiv 3(\bmod 4)\end{cases}
$$

where p_{1} and p_{2} are primes and $p_{1}<p_{2}$. Consider the following four families of fields :

$$
\begin{aligned}
& A=\{\text { imaginary quadratic fields }\} \cap K \\
& B=\left\{Q\left(\sqrt{p_{1}}\right)\right\} \cap K \\
& C=\left\{Q\left(\sqrt{2 p_{1}}\right) ; p_{1} \equiv 3(\bmod 4)\right\} \cap K \\
& D=\left\{Q\left(\sqrt{p_{1} p_{2}}\right) ; p_{1} \equiv p_{2} \equiv 3(\bmod 4)\right\} \cap K
\end{aligned}
$$

Then K is classified into four disjoint classes: A, B, C and D. When k is imaginary, k belongs to A if and only if $h_{k}=1$ holds. Therefore $A=\{Q(\sqrt{m}) ; m=-1,-2,-3,-7,-11,-19,-43,-67,-163\}$.
So it is sufficient to prove the following Theorems 2-4.
Theorem 2. If GRH holds, there are exactly 15 fields belonging to B :

$$
B=\{Q(\sqrt{m}) ; m=2,3,5,7,11,13,23,29,47,53,83,167,173
$$ 227, 293\}.

Theorem 3. If GRH holds, then there are exactly 5 fields belonging to C : $C=\{Q(\sqrt{m}) ; m=6,14,38,62,398\}$.
Theorem 4. If GRH holds, then there are exactly 13 fields belonging to D :

$$
D=\{Q(\sqrt{m}) ; m=21,69,77,93,213,237,413,437,453,717
$$ 1077, 1133, 1253\}.

In order to prove Theorems 2-4, we need the following two theorems.
Theorem 5 (Mollin and Williams [3]). If GRH holds, the squarefree positive integers $m \equiv 2(\bmod 4)$ satisfying $(m / p)=-1$ for all odd primes p $<\sqrt{m} / 2$ are $6,10,14,26,38,62,122,362,398$, where (/) is the Legendre symbol.

Theorem 6 (Mollin and Williams [3]). If GRH holds, the squarefree positive integers $m \equiv 3(\bmod 4)$ which satisfy $m \neq 2 q^{2}+1$ for any prime q and $(m / p)=-1$ for all odd primes $p<\sqrt{m-2}$ are $3,7,11,15,23,35,47$, 83, 143, 167, 227.

Proof of Theorem 2. It is clear that the quadratic field $k=Q$ $(\sqrt{2})$ satisfies the condition $S(k)=S_{0}(k)$. Consider the following families of fields :

$$
\begin{aligned}
& B_{1}=\left\{Q\left(\sqrt{p_{1}}\right) ; p_{1} \equiv 1(\bmod 4)\right\} \cap K, \\
& B_{2}=\left\{Q\left(\sqrt{p_{1}}\right) ; p_{1} \equiv 3(\bmod 4)\right\} \cap K .
\end{aligned}
$$

Then B is classified into three disjoint classes as follows:

$$
B=\{Q(\sqrt{2})\} \cup B_{1} \cup B_{2}
$$

Next, suppose that $k=Q\left(\sqrt{p_{1}}\right)$ belongs to B_{2}. If there is a prime number q satisfying $p_{1}=2 q^{2}+1$, then $M_{k}=\sqrt{2 q^{2}+1}>q$ and $\left(p_{1} / q\right)=1$. From Theorem 6, it is necessary that p_{1} belongs to $\{3,7,11,15,23,35,47,83$, $143,167,227\}$. So we see easily

$$
B_{2}=\{Q(\sqrt{m}) ; m=3,7,11,23,47,83,167,227\}
$$

Therefore

$$
\begin{aligned}
B= & \{Q(\sqrt{m}) ; m=2,3,5,7,11,13,23,29,47,53,83,167,173, \\
& 227,293\} .
\end{aligned}
$$

Proof of Theorem 3. Suppose that $k=Q\left(\sqrt{2 p_{1}}\right)$ belongs to C. Then, since $M_{k}=\sqrt{2 p_{1}}$, the prime number p such that $p<M_{k}$ and $\chi_{k}(p)=0$ is 2 only. From Theorem 5 , it is necessary that $2 p_{1}$ belongs to $\{6,10,14,26,38$, $62,122,362,398\}$. So we see easily

$$
C=\{Q(\sqrt{m}) ; m=6,14,38,62,398\}
$$

Proof of Theorem 4. Suppose that $k=Q\left(\sqrt{p_{1} p_{2}}\right)$ belongs to D and set $A(x)=\sum\left(p_{1} p_{2} / q\right)$, where the sum is taken over all primes $q \leq x$.

Let $\pi(x)$ be the number of primes $\leq x$. For all primes $\leq x$, we denote by $\pi_{1}(x)$ and $\pi_{2}(x)$ the number of primes q such that $\left(p_{1} p_{2} / q\right)=1$ and $\left(p_{1} p_{2} / q\right)=-1$, respectively. Then $A(x)=\pi_{1}(x)-\pi_{2}(x)$. By Oesterlé [4], if GRH holds, for $i=1,2$,

$$
\left|\pi_{i}(x)-\frac{1}{2} \int_{2}^{x} \frac{d t}{\log t}\right| \leq B(x)
$$

where

$$
B(x)=\frac{1}{2} \sqrt{x}\left\{\left(\frac{1}{\pi}+\frac{5.3}{\log x}\right) \log \left(p_{1} p_{2}\right)+2\left(\frac{\log x}{2 \pi}+2\right)\right\} .
$$

Therefore

$$
|A(x)| \leq 2 B(x)
$$

On the other hand, since k belongs to D, for $x \leq \frac{\sqrt{p_{1} p_{2}}}{2}$

$$
|A(x)| \geq \pi(x)-1
$$

holds. By Roser-Schoenfeld [6], $x \geq 17$ implies $\frac{x}{\log x} \leq \pi(x)$. Put $t=\frac{1}{2}$ $\sqrt{p_{1} p_{2}}$, then

$$
B(t)=\frac{1}{2} \sqrt{t}\left\{\left(\frac{1}{\pi}+\frac{5.3}{\log t}\right) \log \left(4 t^{2}\right)+2\left(\frac{\log t}{2 \pi}+2\right)\right\} .
$$

Assume $t \geq e^{12}$, then

$$
|A(t)|>\frac{t}{\log t}-1
$$

On the other hand, we have

$$
\begin{aligned}
|A(t)| & \leq 2 B(t) \\
& =\frac{3}{\pi} \sqrt{t} \log t+\left(\frac{2 \log 2}{\pi}+14.6\right) \sqrt{t}+\frac{10.6 \sqrt{t} \log 2}{\log t} \\
& <\sqrt{t} \log t+15.3 \sqrt{t}+\frac{10.6 \sqrt{t}}{\log t} \\
& <\left(1+\frac{15.3}{12}+\frac{10.6}{12^{2}}\right) \sqrt{t} \log t \\
& <2.35 \sqrt{t} \log t \\
& <\frac{t}{\log t}-1 \\
& \leq|A(t)|
\end{aligned}
$$

Table I

p	n	p	n	p	n
3	5	43	140213	101	261153653
5	5	47	156525	103	261153653
7	5	53	550205	107	416748717
11	77	59	550205	109	416748717
13	117	61	994565	113	416748717
17	605	67	1144293	127	1586592293
19	717	71	1878245	131	1586592293
23	1965	73	1878245	137	5702566397
29	10925	79	9903005	139	5702566397
31	10925	83	27005517	149	15933687413
37	26253	89	27082557	151	25777678685
41	26253	97	27082557	157	181315486677

Table II

m	r								
21	5	597	7	1349	5	2021	5	2757	13
69	5	669	5	1357	3	2077	3	2773	3
77	13	717	23	1389	5	2101	3	2869	3
93	7	749	5	1397	7	2149	3	2893	3
133	3	781	3	1437	7	2157	7	2901	5
141	5	789	5	1461	5	2181	5	2933	17
213	11	813	7	1477	3	2189	5	2949	5
237	13	869	5	1501	3	2229	5	2973	11
253	3	893	7	1509	5	2253	11	2981	5
301	3	917	11	1541	5	2317	3	3013	3
309	5	933	7	1589	5	2413	3	3053	7
341	5	973	3	1661	5	2429	5	3093	13
381	5	989	5	1757	19	2453	13	3101	5
413	13	1077	29	1797	11	2461	3	3117	7
437	7	1101	5	1821	5	2469	5	3149	5
453	37	1133	23	1829	5	2517	7	3173	7
469	3	1141	3	1837	3	2573	7	3189	5
501	5	1149	5	1893	11	2589	5	3197	13
517	3	1253	29	1909	3	2629	3	3261	5
573	11	1293	17	1941	5	2653	3	3269	5
581	5	1317	7	1957	3	2661	5	3309	5
589	3	1333	3	1981	3	2733	11	3317	17

which is a contradiction. Therefore we have $p_{1} p_{2}<4 e^{24}$. If $p_{1} p_{2} \equiv 1(\bmod 8)$, then $\left(p_{1} p_{2} / 2\right)=1$. Therefore we may consider $p_{1} p_{2} \equiv 5(\bmod 8)$ only. We owe Tables I, II to J. Muramatsu. In the Table I, n is the minimal positive
integer such that $n \equiv 5(\bmod 8)$ and $(n / q) \neq 1$ for all primes $q \leq p$. From Table I, we see $p_{1} p_{2} \leq 3364$. In Table II, r is the minimal prime such that $\left(p_{1} p_{2} / r\right)=1$ for $p_{1} p_{2} \equiv 5(\bmod 8)$. From the table II, we have $D=\{Q(\sqrt{m}) ; m=21,69,77,93,213,237,413,437,453,717$, 1077, 1133, 1253\}.

References

[1] M. G. Leu: On a conjecture of Ono on real quadratic fields. Proc. Japan Acad., 63A, 323-326(1987).
[2] - : On a problem of Ono and quadratic non-residue. Nagoya Math. J., 115, 185-198 (1989).
[3] R. A. Mollin and H. C. Williams: Quadratic non-residue and prime-producing polynomials. Canada. Math. Bull., 32, 474-478 (1989).
[4] Oesterlé: Versions effectives du théorèm de Chebotalev sous L’Hypothèse de Riemann Génèralisè. Soc. Math. France Astérisque, 61, 165-167 (1979).
[5] T. Ono: A problem on quadratic fields. Proc. Japan Acad., 64A, 78-79 (1988).
[6] J. B. Rosser and L. Schoenfeld: Approxiamate formulas for some functions of prime numbers. Illinois J. Math., 6, 64-94 (1962).
[7] H. M. Stàrk: A complete determination of the complex quadratic fields of class number one. Michigan Math. J. , 14, 1-27 (1967).
[8] K. Yosidome and Y. Asaeda: On Ono's problem on quadratic fields. Proc. Japan Acad., 67A, 348-352 (1991).

