68. On the Pro-p Gottlieb Theorem

By Hiroaki NAKAMURA

Department of Mathematics, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1992)

The purpose of this note is to present a remark on center-triviality of certain pro-p groups. We shall show the following

Theorem 1. Let p be a rational prime, G a pro-p group, and F_p the trivial G-module of order p. Suppose that the following three conditions are satisfied.

- (1) $cd_{\mathfrak{p}}G=n<\infty$,
- (2)
- $H^{i}(G, \mathbf{F}_{p})$ is finite for $i \geq 0$, $\sum_{i} (-1)^{i} dim H^{i}(G, \mathbf{F}_{p}) \neq 0$. (3)

Then each open subgroup of G has trivial centralizer in G. In particular, the center of G is trivial.

Observing that the conditions (1)-(3) are inherited by any open subgroup of G, we see that we may prove just the center-triviality of G. The proof is divided into two steps.

Step 1. Let $\Lambda = \mathbf{Z}_{b}[[G]]$ be the complete group algebra of G over the ring of p-adic integers Z_{b} . Then Λ is a local pseudocompact ring whose unique open maximal ideal R is the kernel of the canonical augmentation $A \rightarrow Z/pZ$. The following 'Nakayama lemma' due to A. Brumer [1] plays a crucial role in this step.

Lemma 2 (Brumer). Let Λ be a pseudocompact ring with radical R, M a pseudocompact Λ -module, and let $x_1, \ldots, x_m \in M$. If M/RM is (topologically) generated by the images of x_1, \ldots, x_m , then $M = \Lambda x_1 + \cdots + \Lambda x_m$.

Proof. See [1] Corollary 1.5.

It is remarkable that, in contrast to the usual Nakayama lemma, the above Brumer's lemma does not assume the finite generation of M as a Λ -module, but does imply it.

Lemma 3. Let G be a pro-p group satisfying the conditions (1),(2) of Theorem 1. Then the trivial Λ -module \mathbf{Z}_{b} has a finite free resolution:

$$(F): 0 \to F_n \to F_{n-1} \to \cdots \to F_0 \to \mathbf{Z}_p \to 0,$$

where each F_i is a free Λ -module of finite rank $(0 \le i \le n)$.

Proof. We shall follow an argument in Gruenberg [3] 8.1 carefully in our context.

1°. We first show by induction on $N \ge 1$ that there is an exact sequence of Λ -modules

$$(A_N): 0 \to K_N \to F_{N-1} \to \cdots \to F_0 \to \mathbf{Z}_p \to 0,$$

in which F_i ($0 \le i \le n-1$) are free of finite ranks and K_N is arbitrary. If N=1, then we can take as $F_0=\Lambda$, $K_1=$ the augmentation ideal of Λ . So we assume that the exact sequence (A_N) is obtained. To obtain (A_{N+1}) , it suffices to show that K_N in the sequence (A_N) is finitely generated. As the

category of pseudocompact Λ -modules is enough projective [1], we get the exact sequence

$$Hom_G(F_{N-1}, \mathbf{F}_p) \to Hom_G(K_N, \mathbf{F}_p) \to Ext_{\Lambda}^N(\mathbf{Z}_p, \mathbf{F}_p) \to 0.$$

Here Hom_G denotes the continuous G-homomorphisms. Moreover, by [1] Lemma 4.2, we have $Ext_A^N(\mathbf{Z}_b, \mathbf{F}_b) = H^N(G, \mathbf{F}_b)$. Since the first and the third terms are finite, $Hom_G(K_N, F_b)$ turns out to be a finite set. From this the finiteness of K_N/RK_N follows. Thus, by Brumer's lemma, K_N is finitely generated over Λ .

2°. From 1°, we get an exact sequence

$$\cdots \to F_{n+1} \to F_n \to F_{n-1} \to \cdots \to F_0 \to \mathbb{Z}_n \to 0$$

 $\cdots \to F_{n+1} \to F_n \to F_{n-1} \to \cdots \to F_0 \to \mathbf{Z}_p \to 0$ with F_i free Λ -module of finite rank $(i \geq 0)$. We claim that $K := Image(F_n)$ $ightarrow F_{n-1}$) is a projective object as a pseudocompact Λ -module. For this, it suffices to show that for every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of finite Λ -modules, the induced map $Hom_G(K, B) \to Hom_G(K, C)$ is surjective ([1] Proposition 3.1). We have an exact sequence

$$Hom_G(F_{n-1}, B) \rightarrow Hom_G(K, B) \rightarrow H^n(G, B) \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Hom_G(F_{n-1}, C) \rightarrow Hom_G(K, C) \rightarrow H^n(G, C) \rightarrow 0,$$

and the first and the third vertical arrows are surjective. (Use the condition (1) of Theorem 1 for the latter.) Thus our assertion follows.

 3° . Since the above K is obviously finitely generated, it remains to show the freeness of K. We can choose $x_1, \ldots, x_m \in K$ such that the images $\bar{x}_i (i = 1, ...m)$ in K/RK form a basis. Then by Brumer's lemma, we get

$$K = \Lambda x_1 + \cdots + \Lambda x_m.$$

Define F_n to be $\bigoplus_{i=1}^m \Lambda x_i$, and let Q be the kernel of the canonical projection $F \to K$. Then since K is projective, F is Λ -isomorphic to $K \oplus Q$. Therefore $F/RF \cong K/RK \oplus Q/RQ$.

Comparing the dimensions ($< \infty$), we get Q/RQ = 0. It follows from Brumer's lemma again that Q = 0. Thus K is free of finite rank.

Step 2. We next apply the argument of J. Stallings [6] in our profinite context. This method was previously considered in [5] for giving a simple criterion for center-freeness of certain profinite fundamental groups of algebraic varieties (see Remark 2 below).

We first begin by an arbitrary profinite group G. For an open normal subgroup U of G and a positive integer a, let $T(\mathbf{Z}/p^a\mathbf{Z}[G/U])$ denote the quotient of the group algebra $\mathbf{Z}/p^a\mathbf{Z}[G/U]$ by the submodule generated by the $xy - yx(x, y \in \mathbb{Z}/p^a\mathbb{Z}[G/U])$. Then the canonical projections $T_{U,a}: \mathbb{Z}/p^a\mathbb{Z}[G/U] \to T(\mathbb{Z}/p^a\mathbb{Z}[G/U])$ $(n > 0, U \triangleleft G : open)$

form an inverse system of surjections of finite abelian groups. Taking the inverse limit, we obtain a profinite abelian group $T(\mathbf{Z}_{b}[[G]])$ together with a continuous surjective homomorphism

$$T: \pmb{Z_p}[[G]] \to T(\pmb{Z_p}[[G]])$$

such that $T(\lambda + \mu) = T(\lambda) + T(\mu)$, $T(\lambda \mu) = T(\mu \lambda)$ for $\lambda, \mu \in \mathbb{Z}_{b}[[G]]$. Each element of $T(\mathbf{Z}_{b}[[G]])$ may be viewed as a \mathbf{Z}_{b} -valued measure on the space of the conjugacy classes of G. (See [5] §1.3 for a little more leisured construction of the 'profinite Hattori-Stallings space' $T(\mathbf{Z}_{p}[[G]])$.) We let $\Lambda = \mathbf{Z}_{p}[[G]]$.

Definition. Let P be a finitely generated projective pseudocompact Λ -module and let $f: P \to P$ be a Λ -endomorphism. We define the *profinite Hattori-Stallings trace* $tr(f) \in T(\Lambda)$ as follows. Choose a pseudocompact Λ -module Q with $P \oplus Q \cong \Lambda^{\oplus m}$ for some $m \in N$, and let $\bar{f} = (f, 0): \Lambda^{\oplus m} \to \Lambda^{\oplus m}$ be the 0-extension of f. Let $(\bar{f}_{ij}) \in M_n(\Lambda)$ be the matrix representation of \bar{f} and define $tr(f) = \sum_{i=1}^m T(\bar{f}_{ii})$. It is easy to see the well-definedness of tr(f) and the properties tr(f+g) = tr(f) + tr(g), tr(fg) = tr(gf) for two Λ -endomorphisms f, g of P.

Lemma 4. Let G be a profinite group, and p be a prime number. Suppose that the trivial Λ -module \mathbf{Z}_p has a finite free resolution

$$(F): 0 \xrightarrow{\cdot} F_n \xrightarrow{\cdot} \cdots \xrightarrow{\cdot} F_1 \xrightarrow{\cdot} F_0 \xrightarrow{\cdot} \mathbb{Z}_p \xrightarrow{\cdot} 0,$$

where $F_i(1 \le i \le n)$ are finitely generated free Λ -modules, with Euler characteristic $\chi := \sum (-1)^i rank(F_i) \ne 0$. Then G has trivial center.

Proof. This is Theorem 1.3.2 of [5]. We repeat the proof briefly for the convenience of the reader, which is just a profinite modification of Stallings [6]. Let γ be any central element of G, and consider two Λ -endomorphisms (f_i) , (g_i) of the complex (F) such that f_i = identity and g_i = multiplication by γ on F_i for $i = 0, \ldots, n$. By standard argument in homology theory, we can construct a chain homotopy between (f_i) and (g_i) to obtain

$$0 = \sum_{i=1}^{n} (-1)^{i} tr(f_{i}) - \sum_{i=1}^{n} (-1)^{i} tr(g_{i}) = \chi \cdot (\delta_{1} - \delta_{r}).$$

Here δ_1 (resp. δ_7) is the Dirac measure supported at the conjugacy class {1} (resp. $\{\gamma\}$). Since $\chi \neq 0$, and since the (profinite) space of the conjugacy classes of G is Hausdorff, we get $\gamma = 1$.

Proof of Theorem 1. By Lemmas 3 and 4, we may just assure
$$\sum_{i} (-1)^{i} rank(F_{i}) = \sum_{i} (-1)^{i} dimH^{i}(G, \mathbf{F}_{p}).$$

But we know by [1] Lemma 4.2 that $H^i(G, \mathbf{F}_p) = Ext_A^i(\mathbf{Z}_p, \mathbf{F}_p)$. Here Ext_A^i is the *i*-th extension group in the category of pseudocompact Λ -modules, and can be computed from the resolution in Lemma 3 in the usual way. Thus our assertion certainly follows.

Remark 1. A. Pletch (J. Pure and Appl. Algebra, 16) showed the existence of a finite free $\mathbf{Z}_p[[G]]$ -resolution of \mathbf{Z}_p for certain profinite groups G including pro-p groups, in which some delicate arguments on duality theory (due to P. Gabriel) were involved. In our proof of Lemma 3 above, we restricted ourselves to the case of pro-p groups, and modified part of Pletch's argument along [3] to be able to avoid delicate discussion on duality theory.

Remark 2. The existence of finite free resolution of \mathbf{Z}_p can be also assured for profinite groups isomorphic to the pro- \mathbb{C} completion of \mathbb{C} -good groups of type FL (\mathbb{C} : a 'full' class of finite groups containing $\mathbf{Z}/p\mathbf{Z}$). See [5] 1.3.3.

Application to Galois groups. Let k be a number field of finite degree over the rationals, S a set of places of k containing those lying over a prime p. Denote by $k_S(p)$ the maximal pro-p extension of k unramified outside S,

and by G_S the Galois group $Gal(k_S(p)/k)$. Then it is known that the Euler characteristic of G_S is equal to $-r_2$ (r_2 : the number of complex places of k). Therefore, by the above theorem, if k is not totally real, then $G_S(p)$ has trivial center. This gives an alternative proof of Theorem 2.2 (1) of [7]. In [7], Yamagishi also considered the totally real case, and showed that in that case the centerfreeness of G_S is naturally related with the Leopoldt conjecture.

References

- [1] A. Brumer: Pseudocompact algebras, profinite groups and class formations. J. of Algerba, 4, 442-470 (1966).
- [2] D. H. Gottlieb: A certain subgroup of the fundamental group. Amer. J. Math., 87, 840-856 (1965).
- [3] K. W. Gruenberg: Cohomological topics in group theory. Lect. Notes in Math., vol.143, Springer-Verlag (1970).
- [4] H. Nakamura: Centralizers of Galois representations in pro-*l* pure sphere braid groups. Proc. Japan Acad., **67A**, 208-210 (1991).
- [5] —: Galois rigidity of pure sphere braid groups and profinite calculus (to appear).
- [6] J. Stallings: Centerless groups An algebraic formulation of Gottlieb's theorem. Topology, 4, 129-134 (1965).
- [7] M. Yamagishi: On the center of Galois groups of maximal pro-p extensions of algebraic number fields with restricted ramification (to appear in J. Reine Angew. Math.).