7. A Remark on Higher Circular l-Units

By Yasutaka IHARA
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 13, 1992)

1. Let l be a prime number, and $E_l = E(\{0,1,\infty\})$ be the group of higher circular l-units defined and studied in [1] [2] (esp. [1] §2·6). As is shown in [1], elements of E_l are l-units in the maximal pro-l extension M_l of $Q(\mu_{l\omega})$ unramified outside l ($\mu_{l\omega}$: the group of l-powerth roots of 1), and $Q(E_l)$ corresponds to the kernel of the canonical representation of the Galois group $\operatorname{Gal}(\overline{Q}/Q)$ in the outer automorphism group of the pro-l fundamental group of $P^1 - \{0, 1, \infty\}$. The main purpose of this note is to prove the following

Theorem. For any $\varepsilon \in E_i$ and $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, $\varepsilon^{\sigma-1}$ is a unit.

In other words, if $\varepsilon \in E_i$ and k is any finite Galois extension over Q containing ε , then the fractional ideal $(\varepsilon) = \varepsilon \mathcal{O}_k$ is $\operatorname{Gal}(k/Q)$ -invariant (\mathcal{O}_k) : the ring of integers of k.

The above theorem holds trivially when l is a regular prime. In fact, in this case, l has a unique extension in M_l and hence every l-unit in M_l has the claimed property. (To see that l has a unique extension in M_l , first observe that it is so in the maximal l-elementary abelian extension of $\mathbf{Q}(\mu_l)$ unramified outside l; then apply the Burnside principle "a closed subgroup D of a pro-l group G coincides with G if its image \overline{D} on the Frattini quotient \overline{G} of G coincides with \overline{G} " to the decomposition group $D \subset \operatorname{Gal}(M_l/\mathbf{Q}(\mu_l))$ of an extension of l.) But when l is irregular, l does decompose in M_l ; hence not all the l-units of M_l can enjoy the property stated in the theorem.

In [1] ($\S 0 \cdot 2$), we raised two questions (a) (b), which, in the present language, read as

- (a) $\mathbf{Q}(E_i) = M_i$?
- (b) Is E_i the full group of l-units in $Q(E_i)$?

The above theorem implies that when l is irregular, E_l cannot be the group of all l-units in M_l , and hence at most one of (a) (b) can have an affirmative answer. In any case, it is an interesting open question to characterize the field $Q(E_l)$ and the group E_l .

2. Proof of the theorem. The proof is quite elementary. Let v denote any extension to \overline{Q} of the normalized additive l-adic valuation ord_l of Q (so, v(l)=1).

Lemma 1. If $a=b^l\in m{Q}^{\times}$ and $v(a-1)< l(l-1)^{-1}$, then $v(b-1)=l^{-1}\times v(a-1)$.

Proof. Decompose a-1 into the product of $b-\zeta^i$ over all $i \pmod{l}$, ζ

being a primitive *l*-th root of 1. Then $v(b-\zeta^i) < (l-1)^{-1}$ for at least one *i*. But since $v(\zeta^i-\zeta^j)=(l-1)^{-1}$ for $j \not\equiv i \pmod{l}$, we have $v(b-\zeta^j)=v(b-\zeta^i)$ for all *j*. Q.E.D.

The following lemma is crucial for proving the theorem. It is a modification of an estimation previously communicated to the author by G. W. Anderson (letter of October 19, 1987).

Lemma 2. With the notation of [1], let $S \in S = S(\{0, 1, \infty\})$, and assume $l \neq 2, 3$. Then

$$(*)$$
 $v(a) < l(l-1)^{-1}$

for any $a \in S \setminus \{0, \infty\}$.

Proof. By induction on S:

IA: "Valid for T(S) for all $T \in PGL_2$ with $T(S) \ni 0, 1, \infty$ "

$$\Rightarrow$$
IC: "so for $T'(S^{1/l})$ for all $T' \in \operatorname{PGL}_2$ with $T'(S^{1/l}) \ni 0, 1, \infty$ ".

First, if $S = S_0 = \{0, 1, \infty\}$, then $T(S) = \{0, 1, \infty\}$ and a = 1; hence v(a) = 0, and (*) is satisfied.

Now let S satisfy the above induction assumption IA, and let $T'(S^{1/l})$ be any PGL₂-transform of $S^{1/l}$ containing $0, 1, \infty$. Take any $c \in T'(S^{1/l})$, $c \neq 0, \infty$. Then T', c are of the form:

$$T'(t) = \frac{b_2 - b_3}{b_2 - b_1} \cdot \frac{t - b_1}{t - b_3}, \qquad c = \frac{b_2 - b_3}{b_2 - b_1} \cdot \frac{b_4 - b_1}{b_4 - b_3},$$

where $a_i = b_i^l \in S$ $(i = 1, \dots, 4)$. (When one of the b_i is ∞ , the two factors, such as $t - b_i$, $b_i - b_j$, involving this b_i should be cancelled out.) First, assume that a_i are distinct and finite. Then by using IA for $T_j(S)$, where $T_j(t) = 1 - a_j^{-1}t$, we obtain

$$v(1-a_j^{-1}a_i) < l(l-1)^{-1} \quad (i \neq j)$$
;

hence

$$(**) v(1-b_j^{-1}b_i) = l^{-1} \cdot v(1-a_j^{-1}a_i)$$

by Lemma 1. Therefore, $v(b_j-b_i)=l^{-1}v(a_j-a_i)$ for $i\neq j$. Therefore, we obtain the desired inequality IC:

$$v(c) = \frac{1}{l} v \left(\frac{a_2 - a_3}{a_2 - a_1} \cdot \frac{a_4 - a_1}{a_4 - a_2} \right) < (l-1)^{-1} < l(l-1)^{-1},$$

by using IA for

$$T(t) = \frac{a_2 - a_3}{a_2 - a_1} \cdot \frac{t - a_1}{t - a_3}.$$

When $a_1=a_4$, $a_2=a_3$, and are finite, the estimation of v(c) will become the "worst". In this case,

$$c = \frac{b_2}{b_2 - b_1} \frac{b_4}{b_4 - b_3} (1 - \zeta)(1 - \zeta')$$

 $(\zeta, \zeta' \in \mu_t \setminus \{1\})$. First, note that the above equality (**) remains valid for i, j = 1, 2 of this case. This gives

$$v(b_2(b_2-b_1)^{-1})=l^{-1}v(a_2(a_2-a_1)^{-1}).$$

But $a_2(a_2-a_1)^{-1} = T(0) \in T(S)$, for $T(t) = (t-a_2)(a_1-a_2)^{-1}$; hence $v(a_2(a_2-a_1)^{-1}) < (l(l-1)^{-1})$ by IA. Therefore, $v(b_2(b_2-b_1)^{-1}) < (l-1)^{-1}$. Similarly,

 $v(b_4(b_4-b_3)^{-1}) < (l-1)^{-1}$. Therefore, $v(c) < 4(l-1)^{-1} < l(l-1)^{-1}$, as $l \ge 5$.

The other cases are simpler and will be omitted. Q.E.D.

Lemma 3. Assume $l\neq 2,3$. If $S\in \mathcal{S}$, $a,a'\in S\setminus \{\infty\}$ and $a\neq a'$, then $(a-a')^{\sigma-1}$ is a unit.

Proof. Induction on S;

"valid for S" \Rightarrow "valid for T(S), $S^{1/l}$ ".

- (i) For T(S). This is trivial, as the difference of two distinct elements of T(S) can be expressed as the ratio of two elements each of which is a product of at most 3 elements of the form $s-s'(s,s'\in S\setminus (\infty))$.
- (ii) For $S^{1/l}$: Take $a, a' \in S$, and b, b', with $b^l = a$, $b'^l = a'$, $b \neq b'$. Consider the element $(b-b')^{\sigma-1}$. If a=a', then $a \neq 0$, and hence $a^{\sigma-1} = (a-0)^{\sigma-1}$ is a unit by the induction assumption. Hence $b^{\sigma-1}$ is also a unit (being an l-th root of $a^{\sigma-1}$). Moreover, $(1-\zeta)^{\sigma-1}$ is a unit for any $\zeta \in \mu_l \setminus \{1\}$. Therefore, $(b-b')^{\sigma-1}$ is a unit in this case.

Now suppose that $a\neq a'$, $a'\neq 0$. Put $\beta=bb'^{-1}$ and $\alpha=\beta^l=aa'^{-1}$. Then $(\alpha-1)^{\sigma-1}=(a-a')^{\sigma-1}/a'^{\sigma-1}$ is a unit by the induction assumption. In particular, $v(\alpha^{\sigma}-1)=v(\alpha-1)$. By Lemma 2 applied to $1-\alpha\in T(S)(T(t)=1-a'^{-1}t)$, we obtain $v(\alpha-1)< l(l-1)^{-1}$. Thus, Lemma 1 gives

$$v(\beta-1) = v(\beta^{\sigma}-1) = \frac{1}{l}v(\alpha-1).$$

Therefore, $v((\beta-1)^{\sigma-1})=0$ for any extension v of ord_l. Since $\beta-1 \in E_l$ is an l-unit ([1] Prop. $2 \cdot 5 \cdot 1$.), this implies that $(\beta-1)^{\sigma-1}$ is a unit. Since $b'^{\sigma-1}$ is also a unit (being an l-th root of $a'^{\sigma-1}$ which is a unit by the induction assumption), $(b-b')^{\sigma-1}$ is unit. Q.E.D.

Now, to prove the theorem we may assume l irregular, in particular l>3. By Lemma 3 applied to the case a'=0, we see that $a^{\sigma-1}$ is a unit for all $a \in S \setminus \{0, \infty\}$. Since E_l is generated by $S \setminus \{0, \infty\}$ $(S \in S)$, the theorem follows.

Acknowledgment. The author wishes to thank Greg W. Anderson for his generosity to have allowed me to use a modification of his earlier estimation as a crucial lemma (§2, Lemma 2).

References

- Anderson, G. and Ihara, Y.: Pro-l branched coverings of P¹ and higher circular l-units. Ann. of Math., 128, 271-293 (1988).
- [2] —: Part 2. International J. of Math., 1, 119-148 (1990).