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Evolution Governed by "Generalized" Dissipative Operators

By Yoshikazu KOBAYASHI *) and Naoki TANAKA* *)

(Communicated by Koyosi IT6, M. J. A., Oct. 12, 1992)

Let X be a real Banach space with norm I" [. For x
LI(0, T :X), we consider the abstract Cauchy problem of the form

(d/dt)u(t) Au(t) + f (t), for t (0, T),(CP ;x, f) u(0) x,
where A is a multivalued operator in X satisfying the dissipative condition
of the following general type"
(GD) There exists a "uniqueness function" co such that

[x- x, y- ]_
for xl, x2 D (A), y Ax and y2 Axe.
We mean by the "uniqueness function" a real valued continuous function co
defined on [0, oo) such that co(0) 0 and that r(t) 0 is the unique solu.
tion of the initial value problem: (d/dt)r(t) co(r(t)), t >_ 0 and
r(0) ----- 0. The semi-inner products [’, "]+/- are defined by
[x, y]+ lim(I x + Yl- xl)/ and [x, y]_

0
forx, y X.

The first aim of this note is to introduce a notion of generalized solu-
tions, i.e., that of mild solutions, to the Cauchy problem (CP ;x, f) and to
investigate its fundamental properties. The second is to discuss the existence
of mild solutions of the problem (CP;x, f). Here, we sketch our results.
The details of the results will be exhibited elsewhere.

1. Properties of mild solutions. We introduce a notion of solutions,
called herein mild solutions, which refers directly to the approximation
method used to establish the existence of solutions, so-called method of dis-
cretization in time.

Definition 1. Let e > 0. A piecewise constant function u [0, t] --* X
is said to be an e-approximate solution of (CP x, f) on [0, T], if there ex-
ists a partition {0 to < t < < t} of the interval [0, tg] and a finite
sequence ((xi, fi) i 1," ",N) with the four properties below:

j’Xo for t= 0(e.1)
x for t (t_l, t]

and
(t t_)-(x x-) Ax + fi,

for 1," ",N,
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(e.2) t- t_l _< e, i- 1,2,...,N and T-- e < ts _< T,
(.3) xo- x -< ,

N ft(e.4) , If (t) dt < e.
"=

Definition 2. A continuous function u" [0, T]---* X is said to be a mild
solution of (CP;x,f) on [0, T], provided that for each e 0 there is an
e-approximate solution u of (CP;x,f) on [0, T] such that lu(t) --u(t)]
--< e for t in the domain of u.

We have the following type of uniqueness theorem for mild solutions (cf.
Benilan [1 ]).

Theorem 1. Let u" [0, T]---*X and v" [0, T] X be mild solutions

of (CP x, f) and (CP y, g) on [0, T], respectively. Then
u (t) v (t) u <s> v (s>

<-- {[u(a) v(a), f (a) g(a)]+ +  o(I u(a) v(a)l)} da

for s, t [0, T] with s <-- t. If f g in L(0, T X) and x- y in particu-
lar, then u(t) v(t) on [0, T].

2. Existence of mild solutions. The following is one of the most fun-
damental theorems concerning the convergence of e-approximate solutions
(cf. Kobayashi [6] and Takahashi [10]).

Theorem 2. For each > O, let u" [0, tv,]---* X be an t-approximate
solution of (CP x, f) on [0, T]. If x D (A), then the following statements
are mutually equivalent.

(i) sup{[u(t)[ t [0, t},]} is bounded as $ O.
(ii) There exists a mild solution u of (CP;x, f) on [0, T] such that sup
{lug(t) u(t) [" t [0, t%]} converges to zero as O.

The proof of Theorem 2 is based on
Lemma 1. Suppose that for 2., 12 > O, three sequences {t]}2o, {t}Vo and

{a," i- 0,1,’’’ ,Na and j- 0,1,’-" ,Nv} of nonnegative numbers satisfy the
following four conditions

(i) 0-- to < t < < t, 0-- t’< tf < < t,
h{ t- t_ _< 2, i= 1,2,...,N, T- a < tL <- T,
hf t tf_ <- p, j- 1,2,-..,Na, T--/< t <_ T,

(ii) there exists a number K> 0 such that a,’_< K for 0-< i <- N and
O<_j<_N,

(iii) there exist M >_ 0 and A,a >-- 0 with limsup,a,oA, <-A < oo such
that

a, , triM for i 0 or j O,
(iv) there exist L >_ 0 and B,a >_ 0 with limsup,a,oB,a <_ B co such

that
(a:--a,)/h+ (a,-- ’a,_)/hy < oo(a:f) + L It ty / B,
forl <_ i <_ N and 1 <-- i <-- Na.

Then we have
limsup(sup{a{,’0 <-- i <- N and 0 <- j <- Na with ITS-- t <-- / +12+h})
,a,o
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_< sup{mg(t’r] + hM, Lh + 2) "t [0, T]} + ?-K(A + B)
for h >_ 0 and 7 > O. Here mg(t" a, fl) is the nonextentable maximal solution

of the initial problem" (d/dt) r (t) cog(r (t)) -t- fl, t >_ 0 and r (0) e,
where c, fl >_ 0 and cog is defined by

oo(r) for O <_ r <_ K,
(.DK (" co(K) for r >_ K.

Roughly speaking, Lemma 1 is proved by comparing ai,j’a with Ai.(t, tf),
by using the following difference approximate version (Lemma 2)of compari-
son theorem, where Ag.(t, s) mg(t /X s ? + t-- s U, L t-- s + ri)
is a solution of partial differential equation"

Jut(t, s) + Us(t, s) co(u(t, s)) + Lit- s[+
in D’((O,T) (0, T))

u(t, s) +It-- s]M, t O or s: 0.
Lemma 2. Suppose that / > 0 and two families {a, ao, bo} and {A, Ao,

Bo} of nonnegative numbers satisfy two inequalities
(A Ao)// >- cog(A) - Bo and (a ao)/ <-- cog(a) -b bo.

If bo + 2p(2 (coo(K) + bo)) < Bo then ao <-- Ao implies a <- A. Here p is
the modulus of continuity of cog and coo(K) sup {I cog(r) r _> 0}.

Outline of the proof "(i) ==> (ii)" of Theorem 2" Let /,/2 > 0 and
g Lip([0, T] "X). We set

A,’ (g) max {Ix[ xf E (g) E (g), 0}
for 0 -< i _< N and 0 --< j --< N,, where E(g) and E(g) are defined by

Ef(g) (t- t-) fk g(t) [, 0,1,’",N
k=l

and

E (g) (tf tf_l) ft g (tf) l, j 0,1,...,N,.
k=l

Then we may show that {A;}" 0 -< -< N and 0 --< j --< N,} satisfies three
estimates corresponding to (ii), (iii) and (iv) of Lemma 1. Since
<_ A.’(g) + E}(g) -t- E},(g), it may be proved by Lemma 1 that

lim sup(sup{lug(t) u"(t) l’t [0, t}] fl [0, tf,]})
.o

fo<- sup(mg(t r, ) t [0, T]) + 2 If (t) g(t)

for r] > O, u D(A) and g Lip([0, T] "X). It thus is shown that the
limit lim,ou(t) exists for t [0, T) by noting that mg(t’rl,
converges to zero uniformly on [0, T] as r/ 0 + and Lip ([0, T]’X) is
dense in L(0, T X).

We define S (A) (z X lim inf_.o+/-ld (R (I 2A), x -l-/z) 0
for any x D(A)}. By using Theorem 2 and [11, Lemma 3.2], we have the
following existence theorem of mild solutions (cf. Benilan [1] and Kobayashi

Theorem 3. Suppose that the uniqueness function co satisfies the condition
that lira supr_.ooco(r)/r < oo. If x D (A) and f (t) S (A) for almost all
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t (0, T), then there exists a (unique) mild solution of (CP x, f on [0, T].
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