No. 7] Proc. Japan Acad., 67, Ser. A (1991) 243

62. Normal Bases and i-invariants of Number Fields

By Takashi FUKUDA®*) and Keiichi KOMATSU**)
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1991)

Let @ be the rational number field, £ be a number field, i.e. a finite
algebraic extension of @, S be a set of prime ideals of k¥ and L a finite
algebraic extension of k. We denote by £, the integer ring of L and v, an
additive valuation of L with respect to a prime ideal p of L. We denote by
£,(S) the ring of elements « in L with v, («)=0 for all prime ideals p of L
such that p Nk does not belong to S. Now let p be a fixed odd prime
number, Z, the p-adic integer ring and K a Z -extension of k. Then there
exists a tower of cyclic extensions of %

k=K,cK,c.-..cK,c.-..cK
such that K, is an extension of k& with the degree [K, : k]=p". For the
cyclotomic Z -extension k., of k, we write k,=(k..),.

Recently, Kersten and Michalicek discussed normal bases of p-integer
rings of intermediate fields of a Z,-extension of a CM-field and Vandiver’s
conjecture. Furthermore, Fleckinger and Nguyen Quang Do have discussed
normal bases of p-integer rings of intermediate fields of a Z,-extension of a
number field. In this paper, we investigate normal bases of S-integer rings
of intermediate fields of a Z, -extension of an imaginary quadratic field and
the Iwasawa 2-invariant.

Now we define as follows:

Definition (cf. [4]). We say, a Z,-extension K/k has a normal S-basis,
if each Qg (S)/Q.(S) has a normal basis. Namely, there exists an element
a, of Qg (S) such that {az|oe GK,/k)} is a free Q.(8)-basis of Qg,(S),
where G(K,/k) is the Galois group of K, over k.

Let F be an imaginary quadratic field, F, the cyclotomic Z -extension
of F and ¢,=exp@rv/ —1/p"). We put k=F (%) and 4=G(k/F). Let ¢ be
the order of 4 and X : 4—Z) the Teichmiiller character (a homomorphism
such that £7/=8 for all g e 4). We define

e=L ST (g)g € Z,14]
0 g€4

for each integer 7. The main purpose of this paper is to prove the follow-
ing:

Theorem. Let F be an imaginary quadratic field, p an odd prime
number, F., ¢, k, 4 and e, as above. Let k* be the maximal real sudbfield
of k, A* the p-primary part of the ideal class group of k* and S, the set of
all prime ideals of F' each of which has only one prime factor in k(). We
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suppose that S, contains all prime ideals of F lying above p and that o
component (A*+)* of d-decomposition of A* is non-trivial. If there exists
a Z,extension K of F with KNF_ =F such that K/F has o normal Sy
basis, then the 2-invariant of the cyclotomic Z -extension ki of k* is non-
zero.

In the rest of this paper, we use the same notations as above. Let S
be now the set of prime ideals of % lying above primes ideals of S,. Let E,
be the unit group of Q,, and E;, the unit group of £, (S). We denote by
N, , the norm of %k, over k. Then we have the following :

Lemma 1. (1) (Eo/Nn,o(En))elg (EON,‘,O(E,',)/N",O(E;))“=(E6/N,,,°(E;))“,

@ (BB = (BB B = (B Eye.

Proof. Since only one prime ideal of k, lies above each prime ideal of
S, we have E,N\N, (E})=N, (E,). This shows (E,/N, (E)*=(E,N, (E,)/
N.(E)). Let ¢ be any element of 4=G(k/F) and « any element of E.
We put u,=a°'. Then the definition of S, we have u, ¢ E,. We denote by
@ the coset aN, ((E;) in the factor group E{/N, (E,). Then we have

R“=ﬁe§=(n (073,,-1)”("))“/6=(n 6—(1(0))61/(’(1—] Tre))ess
acd e€d o4
=([] 7D € (BoN o o E)/ N o E2))™,

where X is the Teichmiiller character. This shows (E,N, ((E.)/N, (ED) =
(E{/N, (ED)). 1In a similar way, we can prove (2).

Lemma 2. Let rank,(E,/E%)* denote the dimension of the vector space
(E,/ED)* over the prime field F, of characteristic p. Then we have rank,
(E/ED)*=2.

Proof. Let » be a Minkowski unit of k¥ with N,,:()=1. Let H, be a
subgroup of E, generated by {;°|¢ € 4=G(k/F)} and W the group of all roots
of 1in k. We put E,=E,/W and H=H,W/W. Then by the definition of
Minkowski unit, we have H,=Z[4]/Z[4] 3.,.,0, where Z[4] is the group
ring of 4 over Z. Since H,/HE=F [41/F,[413,.,0, we have (H,/H* 1 for
t2£0 (mod 6), where § is the order of 4. Hence we have (H,/E?")*1 for a
sufficiently large » and for 10 (mod §). Since (E,/E?")/(E,/Et")?)e+=(E,/E?)*
#1 for =0 (mod §) and since {,E? € (E,/E?)*, we have rank,(E,/E?)*=2.

Lemma 3. Let L be a cyclic extension of F with [L : Fl=p. If there
exists an element b of E} with Lk=k(¥ b), then bE? ¢ (E}/E{)*.

Proof. Let p be a generator of G(Lk/k) with ¥'b°=¥b¢, and ¢ an
element of G(Lk/F) such that the restriction |k is a generator of G(k/F).
Then there exists a rational integer ¢ and an element u of E} with ¥ b=
¥btu. Since we have Vo= =¥F0'w)y '=VDb*'u)y =VdE )=
¥b¢, we have &i={. Hence we have t=2%(r) (mod p). This shows (bE}?)
=(bEP)*®. Namely, we have bE ¢ (E;/E ).

Kersten and Michalicek obtained the following (cf. [4, p.373]):

Lemma 4. Let k.=\U;..k, be the cyclotomic Z,-extension of k. We
suppose that there exists a Z -extension K=\ J;.,K, of k with KNk.=k
such that K/k has a normal S-basis. Then there exists an element b, of
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E} with K,=k(¥D,) such that there exists an element v, of E, with N, ,(v,)
=b, for every natural number n.

We have furthermore

Lemma 5. If there exists a Z,-extension K of F with KN F..=F such
that K/F has a normal Sy-basis, then (E,/N, (E,)*=1 for every natural
number n.

Proof. We notice that KkNk..=k follows from KNF.=F and that
Kk/k has a normal S-basis. It follows from Lemma 1, Lemma 3 and
Lemma 4 that there exists an element b, of E, with b,E? ¢ (E,/E?)" and
with K,k=k(¥D,) such that there exists an element v, of E, with N, ,(v,)
=b, for every natural number n. Since (E,/E?)**=<b,E?, {;EY) from
Lemma 2, (E,/N, (E))*={b,N,(E,), N, (E,)>=1 for every natural
number n.

Proof of Theorem. Let A, be the p-primary part of the ideal class
group of %, Ker(4,—~A,) the kernel of a natural embedding of 4, in 4,
and H{(G(k,/k), E,) the cohomology group of the G(k,/k)-module E,. Then
we have an injective morphism

1—>Ker(4,—>A4,)—>H'(G(k,/k), E,) (cf. [3, p.26T)).

Since 4 is canonically isomorphic to G(k./F..), we may consider H(G(k,/k),
E,) as 4-module in a natural way. Then it follows from Herbrand’s lemma
that the order of HA(G(k,/k), E,)** is equal to the order of H'(G(k,/k), E,)*
(cf. [5, p.18]). Now, we suppose that there exists a Z,-extension K of F
with KN F_,=F such that K/F has a normal Si-basis. Then HY(G(k,/k), E )"
=(E,/N, (E ) =1 follows from Lemma 5. Hence we have H'(G(k,/k), E )
=1. This shows Ker(4,—A4,)**=1 (cf. [1]). Hence our theorem follows
from [2, Proposition 2] and [6, Theorem 7. 15].
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