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A Free Boundary Problem for Nonlinear
Elliptic Equations
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(Communicated by Shokichi I.NA(., M. . A., Nov. 9, 1990)

.Abstract: In this paper, w.e treat a free boundary problem for non-
linear elliptic equations derived from a variational problem. Linear and
quasilinear cases of this problem have been studied by H. W. Alt, L. A.
Caffarelli and A. Friedman. We treat nonlinear case and show that the
free boundary is a regular curve, when the domain is two dimensional, un-
der a rather strong one sided condition for the coefficient of the functional.

1. Introduction. There are some results obtained by H. W. Alt,
L. A. Caffarelli a.nd A. Friedman about functionals with a variable bound-
ary. (See [1] and [2].)

Their problems are as follows" for u" tgR, tgcR, consider the
functional"

I(u)=fo (F(l’u[2)q-Q(x)Zu>o)dLn,
where L is n dimensional Lebesgue measure and Q(x) is a given measura-
ble function with O’Qmin’Q(x)Qmx and Z denotes a characteristic func-
tion and 9( R) is an open and connected domain (ma.y be unbounded)
with Lipschitz boundary. Here. and in the sequel we denote {x e tg; u(x)
0}=/2(u0), and z>0 is the function of the set tg(u0). In [1], the case
F(t)=t was treated, and in [2], the ca.se F(t) belonging to C"[0, oo), with
F(O)=O a.nd Oc_(F/t)_C and O((1/l+t)(F/t))_C. It was proved
that if Q(x) is HSlder continuous, roughly speaking, the free bounda.ry
t 9(u0) is a. C’-curve in any compact subset of 9, provided that u is
a minimizer o1 I. These results are applied to solve the Jet problem and
the cavitational flow problem (see [3-7] and [11]).

We extend these result ([1] and [2]) to the following nonlinear problem.
Consider the minimizing problem"

J(u) f(aJ(u)DuDuq QZu>o)dL,
under the same assumption for Z and 9 a.s in [1] and here Q is assumed to
be a positive constant. (We used summation convention.) We need some
further assumption for the coefficients a’(z)" a(z) belongs to class C
with respect to z, and satisfies the following ellipticity and boundedness
conditions, 0<21l_a’(z)_/[l or all e R--(0}, moreover [d(z)],
the derivative o [a’(z)] with respect to z, is positive definite. We call

*) Kitami Institute. of Technology.
**) Department of Mathematics, Keio University.



282 S. OMATA and Y. YAMAURA [Vol. 66 (A),

this the. strong one sided condition.
Under these assumptions, we find a minimizer in the unction set K,

where K--{u e Lo(?2) l’u e L(9), u--u on S}. Here u is a given function
with u e Lion(9), gu e L(?2), and 0_u_supu -c, and S is a subset of
372 with a positive n-1 dimensional Hausdorff measure.

We show that if is 2 dimensional, the free boundary of the mini-
mizer J is a C’ curve in any compact subset 9.

2. Regularity of a minimizer. The existence theorem is a direct
conclusion of the lower semicontinuity of the functional J under an as-
sumption J(u)c (see [1]). The boundedness of a minimizer is obtained

u 0)in the same way as in [1], using the test function u-min(sup -u,
and u--min (u, 0).

We can treat u by the method of Ladyzhenskaya and Ural’tseva, and
obtain the HSlder continuity of a minimizer.

Theorem 2.1. If u is the minimizer, then there exists0 depending
on , such that u e C(), where is a subdomain whose closure is com-
pactly contained in .

By the theorem above, 2(u0) should be an open set, then u satisfies
the following equation;

(>o) (--a (u)DuDo--d(u)DuDu)dL-O
for all e C({u0}). (In the sequel, we denote left hand side Lu.) By
using this equation, the higher regularity can be easily obtained (see [12]
and [14]). In other words, u e C([2(uO)).

Since OJ(u-5)-J(u) or arbitrary 5eC(9), 0 and 0, we
have the following differential inequality in the whole domain

From this equation, we cannot obtain further regularity results by using
usual methods.

Next we will consider Lipschitz continuity and nondegeneracy of the
minimizer. To obtain the Lipschitz continuity, which plays an essential
part for constructing a Radon measure, we should use the method of Alt-
Caffarelli-Friedma (see [2]).

Theorem 2.2. Let u be a minimizer, and choose Xo e 9 arbitrary with
dist (x0, 9(u--0)) (1/2) dist (x0, 9), then there is constant C=C(n, , A) such
that

U(Xo)_C dist (x0, 9(u-O)).
In the. non-linear case, a proof of this theorem has a little difference

from [2]. Essentially, we use iteration methods using the Morrey type
estimate for the HSlder continuous function. (See [2] and [15].)

By using the Lipschitz continuity of the miminum, we have a nonde-
generacy theorem.
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Theorem 2.3. For any p>l and for any 0xl, there is a constant
C-C(n, ), such that for any balls Br with radius r contained in

implies u=0 in B., provided that u is a minimizer.
3. Identification of the differential q,. Our aim of this paper is now

to prove that the free boundary of a minimizer, 9(u>0)=9{xeg;
u(x)>O}, .becomes locally the graph of a C’-function (a e (0,1)). First,
we will show that 39(u>0) is an (n-1)-dimensional surface in some weak
sense. (See [16].) For this, we will introduce the following Radon mea-
sure

2(D)= sup I (-a(u)DuD?-’(u)D,uD,u)dL",

where D is an arbitrary open set, which is compactly contained in 9. On
this Radon measure 2, the following fact is proved in [2] and [15]: For
any Borel measurable set Ec39(uO)D

(3.1) eH-’(E)

where e and C deend only on D. In arieular he lef inequality o (8.1)
indicates he local finiteness o the ree boundary wih resee to he --1
dimensional Hausdorff measure. Prom this fae, we can conclude ha
he ree boundary 09(>0) is the (-l)-dimensional surface wih locally
finite erimeer in 9. (See [9].) oreover (8.1) shows ha he adon
measure 2 is absolutely eoninuous wih resee o H-[09(>0). hus
we ge the ollowing representation"

; (--a(u)DuD-- ’(u)DuD’u) o>o)
qdH-’

for all
where

q(x)----lim 2(Bp(x)) (x e tg(u0)).
o H-(B,(x) 3t(u>O))

Now we introduce the blow up of the minimum u:

u.o(X) 1--- U(Xo+x) (0).
p

Without loss of generality, by an adequate change of coordinates, we can
assume a’(O)=’a(O). We can show that the blow up limit u.o achieves
the minimum of the following functional which is related to the Laplace-
equation"

Q(3.2) l(w)=I..(o) (,gw.+%.>o)dL’.
Moreover, for a.e. x0 e 39, the blow up limit uo is represented by a follow-
ing linear function"
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Uo(X)- q(Xo) max ((x, ,(x0)}, 0).
a(0)

Thus we get the next equality, or so-called identification:
q =_ /a0)Q a.e. 2(u> 0).

4. Blow up limit of a minimizer (n=2). In this section, we will
mention the blow up limit in the special case n=2. Since the blow up
limit of a minimizer u0 is represented as (3.2), we ca.n proceed in the same
way as in [1].

As the first step we get the next equality using the notion of the blow
up limit"

(4.1) lim u(x)]- Q

for Xo e a(u> O).
Secondly we obtain the following estimate which holds, only in the

case n=2

(4.2)
L(B(u>O)) a(O)--IVu[ log

r
where u is the minimizer of the functional J and B is a sufficiently small
n-dimensional ball contained in 9 with the center on the free boundary.

From (4.1) and (4.2), only in the case n=2 we conclude that for all x0 e
Og(u0), the blow up limit of a minimizer u0 is the half plane solution.

$. Regularity o the free boundary. We can show that all free bound-
ary points have their normal vector a.e. H-. In this section, we will
show the HSlder continuity of the normal vector of the free boundary.
The notion of non-homogeneous blow up plays an essential role of this
proof. (See [1-2].) Here, we need some definitions for non-homogeneous
blow up.

Definition .1. Let a0, a+ e (0, 1] and r0. We say that the mini-
mum u belongs to F(ao, a+ r) in B,(0) with respect to e, if u satisfies fol-
lowing conditions.

u(x)=O in B,(xaop),
Q ((-x)-a_p) in

Q (l+r) in B,

Using the method in [2], we obtain the following theorem, an improve-
ment of the plus flatness condition.

Theorem .2. Let pl and amin(1/10, ao(n, , M)), and suppose
pa, then there exists C=C(n, , M) such that u e F(a, 1 a) in B, w.r.t.
implies u e F(2a, Ca; a) in B,n w.r.t. ,.

Definition . (Non-homogeneous blow up). Let u e F(a, a; r) in

B,(y), where {a} is a sequence which is chosen ao0 as no and
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or all k and r,=O(a).

that

Then we define
f()----- sup {xn (p, apXn) e
f;()--inf {Xn (p, apXn) e

Using Theorem 5.2, it is easy to see that there is a subsequence such

f lim sup f)(z) lim inff(z).
j-,O j--,O
z- z-

Using f defined above, we can show the ollowing lemma which is es-
sential for the improvement of zero flatness condition.

Lemma 5.4. Let u be the sequence of non-homogeneous blow up which

satisfies the following conditions"
u e F(a, a r.) in Bp(x) w.r.t..

and
p=o(), r=o()

’/41[Avrf()--f()]dr<C
(2 e ,,4(0))

where _q3r is a n--1 dimensional ball and Avf() is the average of the inte-
gration of f on 3.q3().

Combining Theorem 5.2 and Lemma 5.4, we can easily obtain the fol-
lowing lemmata.

Lemma 5.5 (Lipschitz continuity of the unction f).
f e C’(_/4(0))

Lemma 5.6 (Estimate for f rom above by linear function). For all
tO, there exists a positive number co such that

f() 1. + 1Or e _q3(O)
2

for some r e [co, O] and is the vector in Rn-1 with I1]_c(n).
Using above lemmata, we. immediately obtain the next lemma, an im-

provement of zero flatness condition.
Lemma 5.7 (Improvement of zero flatness conditions). For all 00,

there exists a positive number co and ao such that if u e F(a, a; r) in Bp
w.r.t. , (for Vaao, Yr_aoa2, Yp_c(n)r), then u e F(Oa, 1; r) in B w.r.t.
(for some -p e [cop, Op], with [-,[_c(n)a).

Using the iteration method, we obtain the theorem.
Theorem 5.8 (Improvement of all flatness conditions). For all 0,

there exists a positive number co and ao such that if u eF(a, 1;r) in B,
w.r.t. ,, (for Yaao, Yr_aoa, Ypc(n)rm), then u e F(Oa, Oa, 0r) in B w.r.t.
, (for some e [cop, (1/4)p], with I--,l_c(n)a).

Finally we can show the conclusion of this paper, by using Theorem
5.8 and the well-known method by Federer ([8]).

Theorem 5.9 (Regularity of the ree boundary). Let D be an arbi-
trarily fixed subdomain compactly contained in tO, then there exists a posi-
tive number ao(n, cOO, such that u e F(a, 1 oo) in B(xo)cD w.r.t. ,, (Va
ao and Yp_aoa) implies that there exists positive number ,(x0), fl=fl(n),
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C-C(n) such that

((x- Xo), (Xo) I<_ C ’ (x e---I z-- Xo Up/2(Xo) F 3{u> 0}).

From this, it immediately follows that the free boundary is a C’
surface.
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