A Two-Parameter Quantization of GL(n)(Summary)

By Mitsuhiro TAKEUCHI Institute of Mathematics, University of Tsukuba (Communicated by Shokichi IYANAGA, M. J. A., May 14, 1990)

1. One-parameter quantizations (or q-analogues) of the general linear group GL(n) are known in two ways. The standard one arises as a dual Hopf algebra to the Drinfeld-Jimbo quantized enveloping algebra $U_{\varrho}(\mathfrak{gl}(n))$ and is studied by many authors [5] [2] [6] [9] [8] [3]. The second one was defined by Dipper-Donkin [1]. One can define the quantum determinant for both quantizations. It is central in the first case, but not in the latter case.

We construct a two-parameter quantization $GL_{\alpha,\beta}(n)$ of GL(n) depending on two units α , β in the base ring. The above known q-analogues are obtained as special cases by taking (q, q) and (1, q) as (α, β) respectively. Further, we construct a two-parameter quantized enveloping algebra $U_{\alpha,\beta}$ associated with $GL_{\alpha,\beta}(n)$. The Drinfeld-Jimbo algebra $U_q(\mathfrak{gl}(n))$ is obtained as a quotient Hopf algebra of $U_{q,q}$.

- 2. We work over a commutative ring k. Let α and β be two units in Let $M_{\alpha,\beta}$ be the k-algebra defined by n^2 generators x_{ij} $(1 \le i, j \le n)$ and the following relations:

- $\begin{array}{lll} (2.1) & x_{ik} x_{ij} \! = \! \alpha x_{ij} x_{ik} & \text{if } j \! < \! k. \\ (2.2) & x_{jk} x_{ik} \! = \! \beta x_{ik} x_{jk} & \text{if } i \! < \! j. \\ (2.3) & x_{jk} x_{it} \! = \! \beta \alpha^{-1} x_{it} x_{jk}, & x_{jt} x_{ik} \! \! x_{ik} x_{jt} \! = \! (\beta \! \! \alpha^{-1}) x_{it} x_{jk} \\ \end{array}$ if i < j and k < l.

The algebra $M_{\alpha,\beta}$ is a (non-commutative) polynomial algebra in x_{ij} in any ordering. This means if w_1, \dots, w_N $(N=n^2)$ is an arbitrary arrangement of x_{ij} ($1 \le i, j \le n$), then the monomials $w_1^{e_1} \cdots w_N^{e_N}$ ($e_i \in \mathbb{N}$) form a free k-base for $M_{a,\beta}$. If k is an integral domain, there is no non-zero divisor in $M_{\alpha,\beta}$.

The algebra $M_{\alpha,\beta}$ has a bialgebra structure such that

$$\Delta x_{ij} = \sum_{s=1}^{n} x_{is} \otimes x_{sj}, \quad \varepsilon x_{ij} = \delta_{ij}.$$

The quantum determinant g=|X| is defined by

$$g = \sum_{\sigma} (-\beta)^{-l(\sigma)} x_{\sigma(1),1} \cdots x_{\sigma(n),n}$$

= $\sum_{\sigma} (-\alpha)^{-l(\sigma)} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$

where σ ranges over all permutations of n letters, and $l(\sigma)$ denotes the number of inversions. It is a group-like element, i.e., we have

$$\Delta g = g \otimes g$$
, $\varepsilon g = 1$.

It is a non-zero divisor of $M_{\alpha,\beta}$ and we have

$$x_{i,j}g = (\beta \alpha^{-1})^{i-j}gx_{i,j}$$

Hence the powers of g satisfy the left and right Ore condition. The localization

$$A_{\alpha,\beta}=M_{\alpha,\beta}[g^{-1}]$$

is a Hopf algebra containing $M_{\alpha,\beta}$ as a subbialgebra. The antipode S is defined by

$$S(x_{ij}) = (-\beta)^{j-i}g^{-1}|X_{ji}| = (-\alpha)^{j-i}|X_{ji}|g^{-1}$$

where $|X_{ji}|$ denotes the quantum determinant of the $(n-1)\times(n-1)$ minor obtained by removing the *j*-th row and the *i*-th column. We have

$$S^{2}(x_{ij}) = (\alpha \beta)^{j-i} x_{ij}.$$

Let $GL_{\alpha,\beta}(n)$ be the quantum group over k represented by the Hopf algebra $A_{\alpha,\beta}$. The standard (resp. the Dipper-Donkin) quantum GL(n) is obtained as a special case if we take $(\alpha,\beta)=(q,q)$ (resp. (1,q)).

- 3. From now on, assume $\alpha\beta-1$ is a unit, too. Let $U_{\alpha,\beta}$ be the k-algebra defined by generators a_i , a_i^{-1} , b_i , b_i^{-1} $(1 \le i \le n)$, e_j , f_j $(1 \le j < n)$ and the following relations:
- (3.1) a_i , b_i ($1 \le i \le n$) commute with one another and

$$a_i a_i^{-1} = a_i^{-1} a_i = b_i b_i^{-1} = b_i^{-1} b_i = 1.$$

(3.2)
$$a_i e_j = \alpha^{\delta_{ij} - \delta_{i,j+1}} e_j a_i, \quad b_i e_j = \beta^{\delta_{ij} - \delta_{i,j+1}} e_j b_i,$$

 $a_i f_j = \alpha^{-\delta_{ij} + \delta_{i,j+1}} f_j a_i, \quad b_i f_j = \beta^{-\delta_{ij} + \delta_{i,j+1}} f_j b_i.$

$$(3.3) \quad [e_j, f_k] = \frac{\delta_{jk}}{\alpha - \beta^{-1}} (a_k b_{k+1}^{-1} - a_{k+1} b_k^{-1}).$$

(3.4)
$$[e_j, e_k] = [f_j, f_k] = 0$$
 if $|j-k| > 1$.

(3.5)
$$[[e_j, e_{j+1}]_{\alpha}, e_j]_{\beta} = [[e_{j+1}, e_j]_{\beta}, e_{j+1}]_{\alpha} = 0,$$

 $[[f_j, f_{j+1}]_{\beta}, f_j]_{\alpha} = [[f_{j+1}, f_j]_{\alpha}, f_{j+1}]_{\beta} = 0 \quad (1 \le j \le n-2).$

In (3.5), we mean

$$[x, y]_a = xy - \alpha yx$$
, $[x, y]_\beta = xy - \beta yx$.

The algebra $U_{\alpha,\beta}$ has a bialgebra structure such that

$$\Delta e_j = 1 \otimes e_j + e_j \otimes a_j b_{j+1}^{-1},
\Delta f_j = f_j \otimes 1 + a_{j+1} b_j^{-1} \otimes f_j \quad (1 \le j < n)$$

and a_i , b_i ($1 \le i \le n$) are group-like. It is a Hopf algebra.

There is a canonical triangular decomposition

$$U_{lpha,\,eta}{=}U_{lpha,\,eta}^-{\otimes}U_{lpha,\,eta}^0{\otimes}U_{lpha,\,eta}^+$$

similarly as the Drinfeld-Jimbo algebra. The \pm parts admit free k-bases similar to the one described in [10] if $\alpha\beta+1$ is invertible in addition. Lusztig's representation theory in [4] can be generalized to $U_{\alpha,\beta}$.

If a=b=q, then $a_ib_i^{-1}$ $(1 \le i \le n)$ are central group-like elements. The quotient Hopf algebra of $U_{q,q}$ by the Hopf ideal $(a_ib_i^{-1}-1,\ 1 \le i \le n)$ is identified with the Drinfeld-Jimbo Hopf algebra $U_q(\mathfrak{gl}(n))$.

Similarly, if $\alpha=1$ and $\beta=q$, then a_i $(1 \le i \le n)$ are central group-like, and one can construct the quotient Hopf algebra of $U_{1,q}$ by the Hopf ideal $(a_i-1, 1 \le i \le n)$. This quotient Hopf algebra is associated with the Dipper-Donkin quantum GL(n) (see 4).

There is also a two-parameter analogue of $U_q(\mathfrak{SI}(n))$. Let $U'_{\alpha,\beta}$ be the subalgebra of $U_{\alpha,\beta}$ generated by e_j , f_j , $a_jb_{j+1}^{-1}$, $a_{j}^{-1}b_{j+1}$, $a_{j+1}b_j^{-1}$, $a_{j+1}^{-1}b_j$ $(1 \le j < n)$.

It is a Hopf subalgebra stable under the adjoint action

$$Ad(h) = \sum h_{(1)}(-)S(h_{(2)}), \quad h \in U_{\alpha,\beta}.$$

Hence one can construct the quotient Hopf algebra $U_{\alpha,\beta}/U'_{\alpha,\beta}$. It is isomorphic to the group (Hopf) algebra of \mathbb{Z}^2 . If $\alpha = \beta = q$, the image of $U'_{q,q}$ in $U_q(\mathfrak{gl}(n))$ is precisely $U_q(\mathfrak{Gl}(n))$. If $\alpha = 1$ and $\beta = q$, $U'_{1,q}$ maps surjectively to the quotient Hopf algebra by the ideal $(\alpha_i - 1, 1 \le i \le n)$.

4. The Hopf algebra $U_{\alpha,\beta}$ is associated with the quantum group $GL_{\alpha,\beta}(n)$ in the following sense. There is a Hopf pairing (see [9])

$$\langle -, - \rangle : U_{\alpha,\beta} \times A_{\alpha,\beta} \rightarrow k$$

such that we have

$$\langle a_i, x_{st} \rangle = \delta_{st} \alpha^{\delta_{ts}}, \quad \langle b_i, x_{st} \rangle = \delta_{st} \beta^{\delta_{ts}},$$

 $\langle e_j, x_{st} \rangle = \delta_{js} \delta_{j+1,t}, \quad \langle f_j, x_{st} \rangle = \delta_{j+1,s} \delta_{jt}.$

If k is a field, this pairing induces Hopf algebra maps

$$U_{\alpha,\beta}{
ightarrow} A_{\alpha,\beta}^{\circ}, \quad A_{\alpha,\beta}{
ightarrow} U_{\alpha,\beta}^{\circ}$$

adjoint with each other. Here ()° denotes the dual Hopf algebra in the sense of Sweedler [7].

In the special cases $(\alpha, \beta) = (q, q)$ or (1, q), one can replace $U_{q,q}$ or $U_{1,q}$ by the previously mentioned quotient Hopf algebras.

References

- [1] R. Dipper and S. Donkin: Quantum GL_n (preprint).
- [2] L. D. Faddeev, N. Y. Reshetikhin, and L. A. Takhtajan: Quantization of Lie groups and Lie algebras. Algebraic Analysis. Academic Press, pp. 129-140 (1988).
- [3] M. Hashimoto and T. Hayashi: Quantum multilinear algebra (preprint).
- [4] G. Lusztig: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math., 70, 237-249 (1988).
- [5] Y. I. Manin: Quantum groups and non-commutative geometry. CRM Univ. de Montréal (1988).
- [6] B. Parashall and J.-P. Wang: Quantum linear groups. I, II (preprint).
- [7] M. Sweedler: Hopf Algebras. W. A. Benjamin, Inc., New York (1969).
- [8] E. Taft and J. Towber: Quantum deformation of flag schemes and Grassmann schemes. I (preprint).
- [9] M. Takeuchi: Some topics on $GL_q(n)$ (preprint).
- [10] H. Yamane: A P-B-W theorem for quantized universal enveloping algebra of type A_N . Publ. RIMS Kyoto Univ., 25, 503-520 (1989).