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0. In [3] Painlev4 gives an example of first order rational differential
equation whose general solution depends transcendentally on arbitrary con-
stants. This example, however, as will be seen in later, is defined essentially
over the complex number field. The aim o this note is to get an example
defined over the field containing nonconstant unctions without separable
variables. To this end it will be necessary to seize some o notions intro-
duced hy Painlev rom the viewpoint o differential algebra.

Let K be a differential field of characteristic 0 with a single differentia-
tion ’. In what ollows every differential field extension of K will be
regarded as differential subfields of a fixed universal differential field exten-
sion o K. Let R be a differential field extension of K and a finitely
generated field extension of K. We say that R depends algebraically on
arbitrary constants if there exists a differential field extension E of K such
that E and R are ree over K and m(R" E)= [ER" ECR] is finite, where C.
or a differential field L denotes the field o constants o L. If this is case,
by re(R) we denote the minimum of such numbers m(R;E). Then there
exists an intermediate differential field S between R and K such that re(R)=
[R’S] and m(S)--=l provided K is algebraically closed (see [2]). We remark
that i we consider a new differentiation * in R by u* =au’ or any u in R
with a fixed nonzero a in K the property of algebraic dependence on arbi-
trary constants will ]e left unaltered, because in the above definition to be
constant with respect to is the same as be so with respect to *. The num-
ber re(R) corresponds to the number of branches o general solution around
a movable singularity which was investigated by Painlev.

1. Lemma. Let R be a differential algebraic function field of one
variable over K. If there exists a finite chain of differential field extensions
of K" K-FoF. _F such that R_F and for each i F is algebraic
extension of F_ or a differential algebraic function field over F_ depend-
ing algebraically on arbitrary constants then R depends algebraically on
arbitrary constants.

Proof. Let m be the minimum index or which R is contained is some
finite algebraic extension F of F. Then F is a differential algebraic unc-
tion field over F_ depending algebraically on arbitrary constants. Hence
there exists a differential field extension E of K such that E and F are free
over K and re(F" E) is finite. Since C and ER are linearly disjoint over
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C, it follows tr.deg C/C=tr.deg EF/ER=tr.deg EF/E--1 therefore
[ER" EC] is finite. This shows R depends algebraically on arbitrary
constants.

Theorem 1. Let y be the general solution of the rational differential
equation y’=f(y), where f is a nonzero rational function in C(y). Let C=
FoFlc...F be the same as in Lemma 1. Suppose that y is contained
in F. Then there is a nonconstant rational function u satisfying fu or
fuy/u e C.

Proof. The field R=C(y) is regarded as a differential field extension
of C. Lemm 1 shows R depends algebraically on arbitrary constants.
Therefore there is an intermediate differential field S between R and C or
which [R’S] is finite and re(S)-1. S has no movable singularity (c. [1,
p. 98]). By Ltiroth’s theorem S can be described as S=C(z). The element
z satisfies Riccati equation defined over C (c. [1, p. 13]). Through a
certain linear transformation o z we have thus the description S=C(u),
u’ or u’/u e C. We see u’ve0, or otherwise f(y)=y’=O, which shows y e C,
a contradiction. This completes the proof.

Remark. This theorem is a generalization of Proposition 2 in [4].
Now let us explain Painlev’s example of differential algebraic unction

field over L--C(x) which does not depend algebraically on arbitrary con-
stants. Consider the general solution y o the ollowing equation

y’ y / x(y+ 1), d/ dx
Then defining a new differentiation * of L(y, y’) by u*-xu’ or u e L(y, y’),
according to Theorem 1 we find C(y, y*) hence L(y, y’) does not depend alge-
braically on arbitrary constants.

2. Theorem 2. Let K be algebraically closed. Let y be the general
solution of y’=f(y)=A(y)/B(y) over K, where A and B are coprime polyno-
mials in K[y] and degAdegB/l. Suppose that R--K(y) depends alge-
braically on arbitrary constants and A(k)k’B(k) for any k e K. Let m=
m(R). Then deg A 2m and m- 1

_
deg B=2(m-- 1).

Proof. There is a intermediate differential field S between R and K
which satisfies [R" S]=m and m(S)--1. It has no movable singularity.
Let v be a normalized valuation of R. We take as a prime element t-y-k,
k e K, or t=l/y. Then i v(y)>=O, v(t’)=--v(B), otherwise, v(t’)=-2--degA
/degB, where B is regarded as an element of K[y]. For in the first case
we have v(f)= --v(B) i v(B)O and v(t’)-O if v(B)--O since f(k)--k’O by
our assumption. In the case where t=l/y we have

t’ y’ / y2 t2A(1/ t) B(1 t).
In any case it results v(t’)gO. Let e be the ramification index of v with
respect to S and w the restriction o v to S. A prime element u o w has
the representation u= aot + alt / -t- Hence v(u’) e- 1+ v(t’). On the
other hand, since S has no movable singularity, ew(u’)=v(u’)_>_O. There-
ore v(u’)=0 and v(t’)-l-e. Applying Hurwitz’ ormula or R and S,
both of which have the genus 0, we have 2(m-1)-----.(e--1), where P



278 T. IWATSURU and K. NISHIOKA [Vol. 65 (A),

runs through all K-places o R and e denotes the ramification index of P
with respect to S. From this it results 2(m-1)= (-v(t’)), with v nor-
malized valuations. Therefore

2(m- 1) (-v(t’))/ (- v(t’))
v(y) >0 v(y) <o
deg B+ deg A-- deg B-- 2 degA --2.

Therefore deg A-2m. In view of this equality and the assumption deg A>__
degB/2, we see degB<__2(m--1). Furthermore above two results on v(t’)
in case v(y)O imply ’2/degB--degA=l--e or e----2m--degB--1. Since
ramification indices do not exceed the degree m= [R" S], it ollows deg B>__
m--1. This completes the proof.

:. Theorem :. Let a:/=O and b be complex numbers and m be a natu-
ral number larger than 2. Let y be the general solution of y’=y/ax-b
over C(x). Then the differential function field C(x, y) over C(x) does not
depend algebraically on arbitrary constants.

Proof. According to Theorem 2 it remains only to prove that lc’=/=/c
-4-ax/ b or any k e K, K being the algebraic closure of C(x). Assume the
converse, namely, we have a, k in K with k’--k/ax/b. Let h=k’e K.
Clearly h=0. In the equation k"--mk-k’/a, changing the independent
variable, we have hh* mk-h/ a, where * d/dk. We first show h to be
integral over C[k]. For let v be a normalized valuation o the function
field C(h,k) with v(k)>_O. I v(h)O then v(h*)v(h), thereby v(hh*)
v(h*)v(h). On the other hand v(hh*)=v(mk-lhA-a)>min{(m--1)v(k)/
v(h), 0}>=v(h), which is a contradiction. Hence h satisfies the equation

hA-ah-/ +a=0, a e C[k].
Here we take n the minimum. The differentiation leads to

a* h+a*2 h-’+ -?a*h
+(mt-h/a)[nh-’/(n--1)ah-+... / a_}--0.

The minimality of n yields

a* -- m(n-rA- 1)a_k / (n-r)aa_--(a* -- mnlc-)a_,or
a* [a* / m(r--1)k-}a_--(n rA- 2)aa_,

where 2<_r<_n/l and we set a0--1, a+---0. Suppose that a*/m(r--1)k-’
=/=0 or any r (2<r<=n+l). Then, since a*2=(a*/mk-)a--na, it ollows
i) if a=0 then deg a--1; ii) if a e C, =/=0 then deg a-m; iii) i a* =/=0 then
deg adeg a. Using the above recurrence relation, by induction we have
degadega_ (2<r<n/l), which contradicts a/--0. Therefore there
exists such a number s that 2.<=s<__n+2 and a*/m(s-1)k-=0. Then

a*--m(r--s)k-ar_,--(n--rA-2)aa_2 (2< r_<_n/2).
By induction it is proved that for l<r<s-1, degas=mr and the leading
coefficient of ar eluals c=(--1)(s--r)...(s--1)/r! In particular c_=
(--1)- and c_=(-1)-2(s-1). From this we have dega--m(s--2)/l and

a has the leading coefficient (--1)-l(n-sA-2)(s-1)a/{m(s--2)+l}. By in-
duction we have for s<r<_n/ 1, deg a=m(r--2)/l and the leading coeffi-
cients c. of a satisfy
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{m(s-- 1) + 1}{m(s--2)+ 1}cs+l=(--1)-la{(m--1)n+s--1},
{re(r--)+ 1}c/=m(r--s+ 1)c (s+ l<=r_<=n),

especially a/,:/:0, which is a contradiction.
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