No. 10] “Proc. Japan Acad., 64, Ser. A (1988) 373

107. On the Asymptotic Property of the Ordinary
Differential Equation

By Kouichi MURAKAMI and Minoru YAMAMOTO

Department of Applied Physics, Faculty of Engineering,
Osaka University

(Communicated by Kdsaku YO0SIDA, M. J. A., Dec. 12, 1988)

1. Introduction. In this paper we consider the asymptotic property
of the zero solution of the ordinary differential equation
(1) ' =7, x), S, 0=0
where x and f belong to the n-dimensional real space R* with Euclidean
norm ||-||, £ is a real scalar and f is defined and continuously differentiable
on I xR, I=]0, o).

By Liapunov’s direct method, Marachkoff proved the theorem for the
asymptotic stability of the zero solution of (1) ([1]). He assumed that the
derivative of the Liapunov’s function with respect to (1): V/,,(¢, ) is nega-
tive definite. Some extensions of this condition were given by many authors
([2], [3] ete.). By using a second Liapunov’s function W(t, ), Matorosov
extended Marachkoff’s theorem in the case that V{,({, #) is not negative
definite ([4]).

The purpose of this paper is to extend some results related to an
asymptotic property of the solution of (1) by means of a second Liapunov’s
function similar to that of Matorosov. Moreover we attempt to extend
other conditions in Marachkoff’s theorem. So we obtain some extensions
of the above theorems.

2. Notations and definitions. We need some notations and definitions
to state our results. If z, y ¢ R*, we denote the distance of x and y by
d(z, y)=||lz—y|. We denote by E(V*=0) the set {x ¢ R*: V*(2)=0}, and
denote by CIP the families of continuous strictly increasing, positive defi-
nite functions.

Definition 1. A function ¢(¢) is said to be integrally positive if
I #(t)dt= + oo holds on every set S=_; ., [@n, ] such that «,<pB,<a,.:
By —aty>3>0.

Definition 2. W/,(%, ) is said to be strictly not equal to zero in the
set E(V*¥=0), if for any number « and A it is possible to find a number
r,(e, A) and a continuous functions &(¢) such that

£(t)>0, f £(s)ds=oo for any t

and in the set {(¢, 2): a<||2||<A4, d(z, E(V*=0))<r, t>0}
W, 2)[|=£@)>0.
Definition 3. W, (t, ) is said to be definitely not equal to zero in the
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set E(V*=0), if for any number « and A it is possible to find a number
r(a, A), &(a, A) such that |W{,(¢, )[|>&>0 in the set {(¢, x): a<{||z| <A,
d(x, E(V*=0))<r, t>0}.

Definition 4. W({, x) admits a higher limit, infinitely small in the
set E(V*=0), if W(¢, x)=0 in the set {(¢, 2): x ¢ E(V*=0), {>0} and if for
any small number I, «, A it is possible to find a number 7'(«, A) such that
1W (2, ©)||<l in the set {(t, 2) : a<||z| <A, d(z, E(V*=0)) <7/, t> 0}

Definition 5. A non-negative function #(¢) is said to be diminishing,
if lim sup, ... jl r(s)ds=0.

3. Theorems. Theorem 1. Suppose that there exist two real-valued
functions V(t, x) and W(t, x) which are defined and continuously differ-
entiable on I X R*. Assume that V and W satisfy the following conditions ;

1 a(lz])<V(E, 2)<b(|z|) in IXR", where a(-), b(-) e CIP, a(r)—o
(7‘—>oo).

2) Vi@, 2) —V*@)¢@)+() in I X R*, where V*(x) is a continuous
non-negative function, ¢(t) is integrally positive, and (t) is inte-
grable.

8) There exists an L>0 such that |W(t, )| <L in I X R".

4) Wi,(¢, x) is strictly not equal to zero in the set E(V*=0).

If, moreover, the function f(t, x) satisfies the following condition
5) For any compact set M CR"
/@ DNK<N+r(E)  forzeM
where N is a positive constant depending on M, r(t) is a non-negative func-
tion depending on M and diminishing.

Then the zero solution of (1) is globally equi-attractive.

Proof of Theorem 1. Let x(t)=ux(t; t, x,) be a solution of (1) passing
through (¢, z,) e I X R*. Since V(¢, x) is continuous, V (¢, 2(f,)) <<oco. By 2)

(2) V¢, 2@)=V (&, x(t,)) +J: V'(s, 2(s))ds

<V(t, a(t)— J j V*(x(s))¢(s)ds+j: W(s)ds < oo.

From 1) we can choose an A, so large that V(¢, x(t)) <a(4,) for any t>t,.
Thus we have ||2(t)]|<A,, hence every solution is defined on [Z, co).
By (2) we have

(3) j V() g(s)ds < oo.

By 4) for any « and an A,, there exist a positive number », and a con-
tinuous function £(¢) such that | W/,(¢, «)||>&(¢) in the set
U={¢, ©): a<||x|<A,, dz, EV*=0))<r, t>0}.
Suppose that x(z) e U. As long as the solution «(¢) remains in the set U in
the interval [z, t] (> 1),
2L>||W (@, @)+ | W (e, 2(@) =W (@, 2(@)— W (z, ()|

> j W(s, x(s))ds” = | j IWGs, a(s) | ds
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(because of 4) and «(t) e U)
2Jt &(s)ds.

But jt &(s)ds—oo (t—>00), we can conclude that x(f) cannot stay permanently
in the set U. Thus there exists a number T, such that x(¢) ¢ U for some
t>c+T,.
Next we suppose that |2(t)||>a« for any ¢t. If at an instant ¢, d(z(z),
E(V*=0)<r,/2, it is possible to find «,, 8, such that
<o <p <+ T,, d(x(ay), E(V*"—_O)):""l/z,
7 /2<d(x(t), E(V*=0)<r,  for a,<t<B,,
dx(B,), E(V*¥=0)=r,.
Because () cannot stay permanently in the set U. Moreover we can find
a 7,>> B, such that d(x(z,), E(V*=0))<7,/2. Infact if there exists an instant
t* such that d(z(t). E(V*=0))>7,/2 for any t>t*, it is possible to find a
positive constant « such that V*(x(t))>«. Therefore
j RACOTOL: JW #(8)ds=oo.
This contradicts (3). Thus in the same way we can find {[«,, 8.]; m=1,2,
3, - - -} such that
T L U <Bpn<tpm+ T, d(x(a,), EV*=0))=r,/2,
/2L d(x(t,), E(V¥*=0))<r, for a,, <t<PBn,
d@(B,), EV*=0))=r,.
Moreover we shall prove that there exists a >0 such that 8,—a,>4d.
Suppose that 8, —a,—0 (n—). By 5)

Bm Bm
e —ateli< [ 1@ lds=" 765, a(s) s

SN —a)+ [ He)ds—0  (m—roo).
On the other hand, ||2(8,) — x(a,) |>] (B || —l|#(e,) || =>7,/2. This is a con-
tradiction. Thus we obtain 8, —«,>06>0 for any m e N.
Now as long as t € [a,, 8.], d(@(t), E(V*=0))>r,/2. Therefore V*(x(?))
>k for any t € [a,, fn). Let S=Uszo: [an, ). Then

f’“ V@) (s)ds> j pds=co.

This contradicts (8). Thus we can conclude that there exists an instant
t,>t, such that |2(t)| <.

Even if there exists an instant ¢{>>¢, such that ||x(t)|>«, we can find
an instant ¢,>%{ such that || 2(t,)||<« in the same way. We shall consider
such infinite sequence of instants of time; {t,(m=1,2,3, ---): ||z, ||<a}.
Now by 2) we have

Vt, 2@)< V., x(tm)>+j: v©ds (=t

Since ||2(t,)|<a, V({E,, 2(@,)<b(|2(t,)D<b(e). Using the condition that
13

¥(t) is integrable, j Y(s)ds—0 (t,,—o0). Thus for any positive number e
tm
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it is possible to find an «>0 and m, € N such that for any m>m,,
Vit sVt ot + [ $©ds<b@+[ w(9ds<a
tm tm

This implies that | z(f)||<e for any t>t,,. Q.E.D.

Theorem 2. Suppose that there exist two real-valued functions V(t, x)

and W(t, x) which are defined and continuously differentiable on IX R".
Assume that V and W satisfy the following conditions ;

1 a(z]PDLV(E, x) in I X R, where a(-) e CIP, a(r)—oco (r—o0).

2) Vi, ©)<—V*@)¢{)+ () in IX R, where V¥(x) is a continuous
non-negative function, ¢(t) is integrally positive, and (t) is inte-
grable.

3) W, x) admits a higher limit, infinitely small in the set E(V*=0).

4) Wiy, ©) is definitely not equal to zero in the set E(V*=0).

If, moreover, the function f(t, x) satisfies the following condition
5) For any compact set M C R"
lf@ |<N+r®t)  forxzeM
where N is a positive constant depending on M, r(t) is a non-negative func-
tion depending on M and diminishing.
Then the zero solution of (1) is globally attractive.
The proof of Theorem 2 can be given by the same idea as in the proof
of Theorem 1.
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