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Let G be a connected, reductive linear algebraic group defined over a
finite field F, with ¢ elements of characteristic p and F' the corresponding
Frobenius endomorphism of G. Let G¥ denote the group of F-fixed points
of G. In [2] R. Gow initiated, in order to determine the Schur indices
of irreducible characters of some finite groups of type G¥, to study
rationality-properties of the characters of G” induced by the linear char-
acters of a Sylow p-subgroup of G¥ (also cf. A. Helversen-Passoto [4] and
Gow [3]). In [5] we have obtained some general results for a general
GT (p#2). The purpose of this paper is to state some more detailed
results when G is a simple algebraic group.

Let G be reductive. Let B and T be respectively an F-stable Borel
subgroup of G with the unipotent radical U and an F-stable maximal torus
of B. Let R be the set of roots of G with respect to T, R* the set of posi-
tive roots determined by B and D the set of corresponding simple roots.
For each a e R, let U, denote the corresponding root subgroup of G. Let
U, be the subgroup of U generated by the U,,« ¢ R*—D. There is a per-
mutation p on D determined by FU,=U,, for a € D. Let I be the set of
orbits of p on D. For each iel, put U;=[][.c; U,. Then we have U/U,
=[l:e: Us; this decomposition is F-stable and we have (U/U,)*=U"|U%
=T[lic; UF. It is known that U* is a Sylow p-subgroup of G* and that if
p is a good prime for G then U% is equal to the commutator subgroup of
U*. Let A be the set of characters of U” such that 2| UL =1 and let 4, be
the set of 2in A such that 2|U?=1 for all iel. Then it is known that,
for any 1¢e 4, I';=Ind$% (1) is multiplicity-free ([1], Theorem 8.1.3; also
see [5], Lemma 1). For an irreducible character X of a finite group and a
field E of characteristic zero, let mz(X) denote the Schur index of X with
respect to E. We have seen in [5] that if X is an irreducible character of
G* such that (X, 2" >4»=1 for some 2¢ 4 or that, when p is a good prime
for G, pyx(1), then we have m (X)<2, where Q is the field of rational
numbers.

Assume now that G is simple. Let X=Hom (T, G,) be the (additive)
module of rational characters of T. Let P(R) and Q(R)=(R), be respec-
tively the weight-lattice and the root-lattice of R, where Z is the ring of
rational integers. Then we have P(R)D XD Q(R); and P(R)/Q(R) is a finite
group. Putd=(X:Q(R)). For an integer =, let ord, n denote the exponent



254 Z. OHMORI [Vol. 64(A),

of the 2-part of n. Then our first result is the following:

Theorem 1. Let G be a simple algebraic group defined over F, and
assume that p+2. Let X be any trreducible character of G¥ such that
X, 25 Yer=1 for some 2 € A or that, when p is a good prime for G, pyx(1).
Then, in any one of the following cases, we have my(X)=1: (i) G is adjoint ;
(ii) G is of type A, where 2|U(1+1)/d or ord, d>ord, (p—1); (iii) G is of type
*A, where 2|I1+1)/d; (iv) G is of type B, where 4|l(1+1); G=Spin;;, where
etther (a) 4|11—1) or (b) ord, (—1)=1 and p=—1 (mod 4) ; (v) G=S0;;; (vi)
G=H Spin,, where 4|1; (vil) G=S8pin; where 4|I(1—1); (viii) G=S053; (ix)
G=:D,; (x) G is of type E,; (xi) G is of type *E,. Moreover, in any one of
the following cases, we have mqy (X)=1 for any rational prime r+p and we
have mg(X)=1 if X is trivial on Z*, where Z is the centre of G: (a) q is an
even power of p; (B) G is of type *A, where q is an odd power of p and
ord, d>ord,(p+1); () G is of type *D, where either (a) ord,l=1 or (b)
ord,(—1)=1 and p=1 (mod 4).

Remark. M.J.J. Barry has shown that, for G=:D,, »p odd, we have
me(X)=1 for any irreducible character X of G*.

As to the group SU,(F,), it is known that any irreducible character of
this group has the Schur index<2 over @ (Gow [3], Theorem 2.9; the as-
sumption there that p and ¢ are sufficiently large can be removed in virtue
of the validity of Ennola-duality for all p, ¢, which is a result of Hotta-
Springer, Kazhdan, Lusztig and Kawanaka). We have

Theorem 2. Let X be any irreducible character of SU,(F,) where we
assume that q is an even power of p+2. Then, for any prime number
r+£p, we have me (X)=1.

Finally, we state some sufficient conditions to the effect that G¥ has
an irreducible character of index 2. Let Z be as before the centre of G
(simple), and let 7, ---,7, be all the distinct irreducible characters of
Z" (¢=|Z*}). For 2e4, and for 1<i<c, put I',,=Ind§%,r (;2). Then it
is easy to show that each I',; is multiplicity-free and I",=>¢.,I",,. We
have (cf. Gow [2, 3]):

Theorem 3. Let G be a simply-connected, simple algebraic group
which is defined and split over F,,q odd. Then, in any one of the follow-
ing cases, each I', ; contains an irreducible character of index 2 over Q: (i)
G is of type A, where either (a) q is an even power of p and 1<ord,(+1)
<ord,(p—1), or, (b) q is an odd power of p, ord, (+1)=1 and p=1 (mod 4) ;
(i) G is of type B, where 4}I(1+1) and either (a) q is an even power of p or
(b) q is an odd power of p=1 (mod 4); (iii) G is of type C, where either (a)
q is an even power of p or (b) q is an odd power of p=1 (mod 4); (iv) G is
of type D, where either (a) ord,l=1 and q is an even power of p, or, (b)
ord,l=1 and q is an odd power of p=1 (mod 8), or, (¢) ord, [—1)=1 and q
is am even power of p=1 (mod 4); (v) G is of type E, where either (a) q is
an even power of p or (b) q is an odd power of p=1 (mod4). If q is an
even power of p, the primes of Q at which the local indices of an irreducible
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constituent X of I';,; can differ from 1 are co and p; if q is an odd power
of p=1 (mod 4), the only primes of Q(y/ D) at which the local indices of X
can differ from 1 are the real ones.

Now let us give a brief outline of the proofs. B? acts on A (resp. on
A) by 22(u)=2(bub-') for b ¢ B, Ae A (resp. 2 4,) and u e UF. Let II be
the Galois group of Q({,) over @ where ¢, is a primitive p™ root of unity.
We shall assume that p=+2. Fixing one 1¢ 4,, set M={b ¢ B"|22=21® for
some 7(b) € IT}; the group M is independent of the choice of 2¢4,, We
investigate the rationality of 1%,2e 4. We have M=LU” with L=MNT*
(DZF) and M|Z*U*=L|Z* ; the mapping b—(b) induces an isomorphism
of L/Z* onto a subgroup of /7 (i.e. z(M)), so that, if « is a fixed generator
of (M) and f is an element of L such that «(f)=«, we have M={f)Z*U*
and {(f mod Z*¥Y~{a) via r. For 1<i<c, put g,=Ind}ryr (5:2). Then the
w. are mutually different irreducible characters of M and we have 2=
i+ +p. Let k=Q("), the field generated over @, by the values of 2%,
and, for 1<i<c, let k,=k(u)=k(@,). For 1<i<c, let A, be the simple
direct summand of the group algebra %,[M] of M over k,., We see that A4,
is isomorphic over k, to the cyclic algebra (k.(,), a,, 7.(f*) over k,, where
@, is a generator of the Galois group of k,(,) over k; such that «,|Q(,)=«a
and t=(L: ZF). In order to calculate the Hasse invariants of each 4,, we
must therefore determine the structure of M explicitly.

In order to do so we argue as follows. Clearly, it suffices to calculate
an element f and the group Z7. Let X=Hom (T, G,.) be as before. F acts
on X by (FXY)@®)=XF(t)) for XeX, teT. We have F(pa)=qa for aeD,
and D is a basis of Q(R)=(R),. The way of the action p on D is well-
known. Therefore, if a basis X, - - -, X, of X is suitably chosen (I=rank of
@), the way of the action of F on X will be stated explicitly in terms of
the X,. Thus we get the structure of M completely. It remains to carry
out the actual calculation. We note that such a calculation is done implic-
itly in Carter [1], pp. 39-41.

Theorem 3 follows from rationality-properties of the I", ;,, 2 € 4,, by an
argument similar to the proof of Theorem 3.8 of Gow [3] using the fact
that, for 1<4, j<e¢, we have (I, ,, I'; ;> er=0,,{r(q—1) +1}/ ¢ for some integer
r>0.
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