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67. Cyclotomic Invariants for Links"™

By Tsuyoshi KOBAYASHL*) Hitoshi MURAKAML**) and Jun MURAKAMI*)
(Communicated by Kdésaku Yosipa, M. J. A., Sept. 12, 1988)

In this note we construct numerical link invariants (cyclotomic invar-
tants) by using solutions to the star-triangle relation for an N-state IRF
model on a two-dimensional square lattice (N=1,2, -.-) [3,6]. Moreover
we will show that these invariants can be defined by using Goeritz matrices
and Seifert matrices. We also describe some of their properties; especially
relations to the Jones polynomial [5], the Q-polynomial [1,4], and the
Kauffman polynomial [7].

Let w(a, b, ¢, d; u) be the cyclotomic solution described in [6]. We
congider a dual graph of an (unoriented) link diagram on a 2-sphere S
It decomposes S? into some regions and every region can be regarded as a
tetragon. So we can assign to each region (or face) the Boltzmann weight
w(a, b, ¢, d; u) for every state on the graph as in Fig, 1. Here a state
is an assignment of elements in Z/NZ to vertices in the graph.

d ’c
d c
i w(a,b,c,d;u)
a b
a 'b
link diagram dual graph

Fig. 1

This is well-defined since w(a, b, ¢, d; u)=w(c,d,a,b;u) [6]. If we take
the limit u— oo X4/ —1 of w(a,b,c,d; u), the partition function Z,=
> TTw(e, b, ¢, d; u) is invariant under the Reidemeister moves 25! of the
link diagram, where the product is taken over all the vertices of the dual
graph and the sum is taken over all the states. This follows from the
star-triangle relation. See [6, Fig. 2]. See also [2] for the Reidemeister
moves.
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Now we can define the partition function directly from the link
diagram as follows. Let D be a diagram on §* of a link in S®. Color the
regions of D with colors « and g like a chess-board. Let a, ay, - - -, a, be
the a-regions and B, B, - - -, B» the B-regions. Then we can define an ex-
tended Goeritz matrix G=(g,,) (0<%, j<n) with entries g,, described in
[2, p. 230]. Note that G=(g,,) A1 <4, j<n) is a Goeritz matrix if we take
© € R®U{0}=8%in «,. Next we interchange the colors (now By, i - - *» Bn
are the a-regions) and define another extended Goeritz matrix G’'=(g},)
0i, j<m). (G'=(g;) (A<1i, j<m) is also a Goeritz matrix.) The parti-
tion function Z,(D) corresponding to the dual graph of D is now defined
as follows.

ZyD)= XZ}L {(—1)ox7gXaxTY 5 {(— 1T X TXETxTY

where g=exp (xv' —1/N), §=(Goos Gu1s - * *» Gnn)s I =(Go0s G115 * * *» Irum)> X (re€SP.
X’) ranges over all 1xX(n-+1) (resp. 1x(m-+41)) matrices with entries in
Z|NZ, and XT and X'* are the transposed matrices.

Since P(_}PT=<OO 8) and P’G’P’T=(?) 8,) for some unimodular ma-

trices of integers P and P’, we have
Z (D) =N*X Z {(— l)gYTqYGYT} X {(_ 1)g'Y'TqY'a'yfT}’
Y,Y’

where g=(91, 9> = - *» Jun)s 9'=(911, 9225 -+ *» I, and Y (resp. Y’) ranges
over all 1 X7 (resp. 1 Xm) matrices with entries in Z/NZ. Now we con-
sider an oriented link and its diagram D. Put

Tv(D)=N-"@y/V N) " x (/' N) " x Z,(D),
where §,=> 7 (—1)*¢**, w(D) is the writhe of D (i.e. the algebraic sum
of the crossings with 7 being +1 and 3 —1), and ¢(D) is the number of
the crossings in D. Then we have

Theorem 1. For every integer N greater than one, T‘N(D) 8 an ori-
ented link type invariant ; t.e. if D and D’ are diagrams of the same oriented
link, then T(D)=T,(D".

Proof. The invariance under the Reidemeister moves 2;* follows from
[6]. Since the invariance under 2;* and 25! follows from direct computa-
tions, we omit it. Note that we can also prove the invariance under 03!
using Goeritz matrices.

From now on we use the notation 7,(L) instead of T,(D) for an ori-
ented link L which is represented by D.

Next we use L. Traldi’s modified Goeritz matrix [12] to define a
“square root” of T. LetH =(h;;) 1<, 7=<d) be a modified Goeritz matrix
of an oriented link L [12]. Put

TN(L)=(¢W)—d ; {(—1)"XTqXHXT},

where h=(hy, Ry, - - -, hyy) and X ranges over all 1 X d matrices with entries
in Z/NZ. Thisis well-defined (that is, independent on the choice of dia-
gram) from [12, Theorem 1]. We call T,(L) and Ty(L) the cyclotomic
invariants for L. T, is a square root of T, since the following holds.
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Theorem 2. {Ty(L)}=Ty(L).

Proof. We can define two modified Goeritz matrices from a diagram
of L considering two types of colorings. Then the theorem follows from
the definition of the modification of the Goeritz matrix in [12]. Details
are omitted.

Since a modified Goeritz matrix H equals W4+ W7” for some Seifert
matrix W of L defined by using a connected Seifert surface [12] (see for
example [2] for the definition of a Seifert matrix), we have

Proposition 1. Let W=(w,;,) 1<4, j<d) be a Seifert matrixz of L, then

Ty(L)=(/ N)= 3 ¢* 7o,

where X ranges over all 1 Xd matrices with entries in Z| NZ.

From Proposition 1, we obtain the following theorem.

Theorem 3. Let V,(t) be the Jones polynomial of L [5]. Then we have

1) TL)=V, -1,

@) T(L)=V,(exp (zv/'—1/83)), and

@ |T,))=Dp)®
for an odd prime integer p, where 8,(L) is the first Betti number of the
double branched cover of L with coefficient in Z|pZ. We can also deter-
mine the argument of T (L) using invarionts of a quadratic form (cf. [10]).

Proof. (1) and (2) follow from the recursive definition of V,(¢) [5].
To prove (3), we remark that we may change W+ W7 into P(W -+ W7T)P*
for any unimodular matrix of integers P and the entry w,,+w,, in W4+ W"
by N (resp. 2N) if i=~7 (resp. i=7) when we define T,(L) as in Proposition
1. So we can diagonalize W+ W7 and the conclusion follows since it is a
presentation matrix for the first homology group of the double branched
cover of L.

Let F' (@, x) be the Kauffman polynomial [7] and Q,(x) the @-polynomial
[1,4]. Then from [1, 8,9, 11] and Theorem 2 we have

Corollary.

~ A (if L is proper)
1) Ty ={
D T 0 (otherwise)

=F, (exp (a/=1/4), —v 2) X (= 1)r®1,
where (L) is the number of components in L and L is proper if the link-
ing number of K and L—K is even for every component K in L.

@) TyL)=Q(—1)X (=P~ = (=)™ x (— 1),

For the interpretation for V(v —1) see [11] and for V, (exp (zv/ —1/3))
see [8, 10].

Finally we remark that the cyclotomic invariants are essentially in-
variants for quadratic forms. So we can define them for more general
situations; for example, links in homology spheres and higher dimensional
links. We also remark that we may take q to be any primitive 2N-th root
of 1, which is suggested by T. Kohno.
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