10. The Dimension Formula of the Space of Cusp Forms of Weight One for $\Gamma_{0}(p)$

By Hirofumi Ishikawa*) and Yosio Tanigawa**)

(Communicated by Shokichi Iyanaga, m. J. a., Feb. 12, 1987)

1. Introduction and the statement of the results. We fix an odd prime number p throughout this paper. Let $\Gamma=\Gamma_{0}(p)$ and χ be a Dirichlet character modulo p satisfying $\chi(-1)=-1$. We regard χ as a character of $\Gamma_{0}(p)$ by $\chi(\sigma)=\chi(d)\left(\sigma=\left[\begin{array}{l}a, b \\ c, d\end{array}\right]\right)$. The purpose of this note is to offer the dimension formula of $S_{1}\left(\Gamma_{0}(p)\right.$, χ), using Selberg's trace formula. Coauthors obtained the results independently, but decided to publish them together. Details will be published elsewhere.

Let S be the upper half-plane and $G=S L_{2}(\boldsymbol{R})$. Put $\tilde{S}=S \times(\boldsymbol{R} / 2 \pi Z)$. G acts on \tilde{S} as in [4]. Let $M(\lambda)$ denote the space of f in $L^{2}(\Gamma \backslash \tilde{S}, \chi)$ such that

$$
\tilde{\Delta} f=\lambda f, \frac{\partial}{\partial \phi} f=-i f\left(\tilde{\Delta}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{5}{4} \frac{\partial^{2}}{\partial \phi^{2}}+y \frac{\partial}{\partial x} \frac{\partial}{\partial \phi}\right) .
$$

Put $\lambda_{0}=-3 / 2$. Let $-3 / 2>\lambda_{1}>\lambda_{2}>\lambda_{3}>\ldots$ be the set of all discrete spectrums of $\tilde{\Delta}$ in $L_{0}^{2}(\Gamma \backslash \tilde{S}, \chi)$ such that $M\left(\lambda_{i}\right) \neq\{0\}$. It follows from [3] that $S_{1}\left(\Gamma_{0}(p), \chi\right)$ is isomorphic to $M\left(\lambda_{0}\right)$. Put $d_{i}=\operatorname{dim}\left(M\left(\lambda_{i}\right)\right), \lambda_{i}=-r_{i}^{2}-(3 / 2)$.

For an integral operator K_{o}^{*} (see below), we can rewrite Selberg's trace formula.

Theorem 1. For $\operatorname{Re}(\delta)>0$, we have

$$
\begin{align*}
& \sum_{i=0}^{\infty} h_{\delta}\left(r_{i}\right) \cdot d_{i}=J(I d, \delta)+J\left(E_{2}, \delta\right)+J\left(E_{3}, \delta\right)+J(H y p, \delta)+J(\infty, \delta)+J(0, \delta) \tag{1}\\
& J(I d, \delta)=2 \pi \text { volume }(\Gamma \backslash S)=(2 / 3) \pi^{2}(p+1), \quad J\left(E_{2}, \delta\right)=0 \\
& J\left(E_{3}, \delta\right)=\frac{8 \pi^{2}}{3 \sqrt{-3} \delta}\left\{F\left(1, \frac{\delta}{2}, 1+\delta ; \omega\right)-F\left(1, \frac{\delta}{2}, 1+\delta ; \bar{\omega}\right)\right\} \alpha_{p} \beta_{\chi} \\
& J(H y p, \delta)=2^{\delta+2} \pi B\left(\frac{1}{2}, \frac{1+\delta}{2}\right) z(\delta, \chi) \\
& J(\infty, \delta)=J(0, \delta)=\log \left(\pi / 2 p^{3 / 2}\right) g_{\delta}(0)+\frac{\Gamma\left(\frac{1+\delta}{2}\right) \Gamma\left(\frac{3+\delta}{2}\right)}{4 \Gamma\left(1+\frac{\delta}{2}\right)^{2}} h_{1+\delta}(0) \\
& -\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(h_{\delta}(r)+h_{1+\delta}(r) \frac{\Gamma\left(\frac{1+\delta}{2}\right) \Gamma\left(\frac{3+\delta}{2}\right)}{\Gamma\left(1+\frac{\delta}{2}\right)^{2}}\right) \psi(1+i r) d r
\end{align*}
$$

[^0]$$
-\frac{1}{2 \pi} \int_{-\infty}^{\infty} h_{\delta}(r)\left(\frac{L^{\prime}(1+2 i r, \chi)}{L(1+2 i r, \chi)}+\frac{L^{\prime}(1+2 i r, \bar{\chi})}{L(1+2 i r, \bar{\chi})}\right) d r .
$$

Here, $J(*, \delta)$'s denote the contributions from identity, elliptic points of order 4, of order 3 or 6 , hyperbolic conjugate classes and cusp at $\infty, 0$. The notations are given as follows; $\alpha_{p}=1,1 / 2$ or 0 according to $p \equiv 1 \bmod 3$, $p=3$ or $p \equiv 2 \bmod 3, \beta_{\chi}=-2$ or 1 according to $\chi(\sigma) \in \boldsymbol{R}$ or $\operatorname{not}\left(\sigma \in E_{3}\right), \omega=$ $(1+\sqrt{-3}) / 2$.
(2) $z(\delta, \chi)=\sum_{\{\sigma\}} \log (N(\sigma)) \sum_{m=1}^{\infty} \frac{\operatorname{sign}\left(\lambda\left(\sigma^{m}\right)\right) \chi\left(\sigma^{m}\right)}{\left(N\left(\sigma^{m}\right)^{1 / 2}-N\left(\sigma^{m}\right)^{-1 / 2}\right)\left(N\left(\sigma^{m}\right)^{1 / 2}+N\left(\sigma^{m}\right)^{-1 / 2}\right)^{\delta}}$
where $\{\sigma\}$ runs over all primitive hyperbolic conjugate classes, and $N(\sigma)$, $\operatorname{sign}(\lambda(\sigma))$ denote the norm of σ, the signature of eigenvalues of σ (Selberg's type zeta function).

$$
g_{\delta}(u)=2^{\delta+2} \pi B\left(\frac{1}{2}, \frac{1+\delta}{2}\right)\left(e^{u / 2}+e^{-u / 2}\right)^{-\delta}
$$

$$
\begin{equation*}
h_{\delta}(r)=2^{\delta+2} \pi B\left(\frac{1}{2}, \frac{1+\delta}{2}\right) B\left(\frac{\delta}{2}+i r, \frac{\delta}{2}-i r\right), \tag{3}
\end{equation*}
$$

\& denotes the digamma function.
As all terms in (1) except $J(H y p, \delta)$ can be continued meromorphically in the whole δ-plane, $z(\delta, \chi)$ will be also continued meromorphically there. Since $J(*, \delta)$'s except $J(H y p, \delta)$ are regular at $\delta=0$, next theorem follows from $\operatorname{Res}_{\delta=0} h_{\delta}(0)=16 \pi^{2}$.

Theorem 2.

$$
\begin{equation*}
d_{0}=\frac{1}{4} \operatorname{Res}_{\delta=0} z(\delta, \chi) \tag{4}
\end{equation*}
$$

2. The Eisenstein series. There are two Γ-inequivalent cusps which are represented by ∞ and 0 . For a complex variable t with $\operatorname{Re}(t)>1$, the Eisenstein series are defined by

$$
\begin{align*}
& L(2 t, \bar{\chi}) E_{\infty}^{*}(z, \phi, \chi, t)=\frac{1}{2} \sum_{\substack{(m, n), \in \mathcal{Z} \times Z, n \neq 0(\bmod p)}}^{\prime} \frac{\bar{\chi}(n) y^{t} e^{-i(\phi+\arg (m p z+n))}}{|m p z+n|^{2 t}} \tag{5}\\
& L(2 t, \chi) E_{0}^{*}(z, \phi, \chi, t)=\frac{-1}{2} \sum_{(m, n) \in Z \times Z} \frac{\chi(m) y^{t} e^{-i(\phi+\arg (m z+n))}}{p^{t}|m z+n|^{2 t}} .
\end{align*}
$$

Lemma 1. The matrix of constant terms of the Fourier expansion of the Eisenstein series is given in the form

$$
M(t, \chi)=\left(m_{\kappa \mu}(t, \chi)\right)=i p^{-t} B\left(t, \frac{1}{2}\right)\left[\begin{array}{cc}
0 & , \tag{6}\\
\frac{L(2 t-1, \bar{\chi})}{L(2 t, \bar{\chi})} \\
\frac{L(2 t-1, \chi)}{L(2 t, \chi)}, & 0
\end{array}\right]
$$

The functional equation of $L(t, \chi)$ gives $M(t, \chi) M(1-t, \chi)=I$.
3. Selberg's trace formula. Now we introduce a point pair Ginvariant kernel of (a)-(b) type in the sense of [6]. For $\operatorname{Re}(\delta)>1$, put

$$
\begin{equation*}
\omega_{\delta}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)=\exp \left(-i\left(\phi-\phi^{\prime}\right)\right) \frac{\left(y y^{\prime}\right)^{\delta / 2}}{\left|\left(z-\bar{z}^{\prime}\right) / 2 i\right|^{\delta}} \frac{\left(y y^{\prime}\right)^{1 / 2}}{\left(z-\bar{z}^{\prime}\right) / 2 i} \tag{7}
\end{equation*}
$$

It follows from [6] that every non zero element in $M(\lambda)$ is an eigenfunction
of the integral operator ω_{δ} and that its eigenvalue depends only on the spectrum λ; so we use $h_{\delta}(r)$ for it, which is given in (3). By the aid of the Eisenstein series, we define

$$
\begin{align*}
& K_{\delta}^{*}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)=K_{\delta}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)-H_{\delta}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right) \\
& K_{\dot{\delta}}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)=\sum_{\sigma \in T} \omega_{\delta}\left(z, \phi ; \sigma\left(z^{\prime}, \phi^{\prime}\right)\right) \chi(\sigma) \\
& H_{\dot{\delta}}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)=\sum_{\kappa \in\{\infty, 0\}} \frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} h_{\dot{\delta}}(r) E_{\kappa}^{*}(z, \phi, \chi, t) \overline{E_{\kappa}^{*}\left(z^{\prime}, \phi^{\prime}, \chi, t\right)} d r \tag{8}\\
& \quad(t=(1 / 2)+i r) .
\end{align*}
$$

By the same argument as in [4, §4], $K_{\delta}^{*}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)$ is bounded in $\tilde{S} \times \tilde{S}$, and the integral operator K_{δ}^{*} is completely continuous and is zero operator on $L_{c}^{2}(\Gamma \backslash \tilde{S}, \chi)$. Since we can regard K_{o}^{*} as an operator on $L_{0}^{2}(\Gamma \backslash \tilde{S}, \chi)$, we get

$$
\begin{equation*}
\sum_{i=0}^{\infty} h_{\delta}\left(r_{i}\right) d_{i}=\int_{\Gamma \backslash \bar{s}} K_{\delta}^{*}(z, \phi ; z, \phi) d z d \phi . \tag{9}
\end{equation*}
$$

Note that the left side will be continued as a meromorphic function of the whole δ-plane with poles at $\left\{ \pm i r_{j}-2 k ; k \in Z \geqq 0, j=0,1, \cdots\right\}$.
4. The integral over diagonal. In order to calculate the integral in (9), we decompose the integral into the sum of Γ-conjugate classes. Now we assume $\operatorname{Re}(\delta)>1$. Put

$$
\begin{equation*}
\overrightarrow{J(\sigma, \delta)}=2 \pi \int_{\Gamma(\sigma) \backslash S} \omega_{\dot{\delta}}(z, 0 ; \sigma(z, 0)) d z \chi(\sigma) \tag{10}
\end{equation*}
$$

We can easily verify the contributions from the identity and hyperbolic conjugate classes, so we check only elliptic and cusp's contributions. $J\left(E_{2}, \delta\right), J\left(E_{3}, \delta\right)$ are obtained by the next lemma.

Lemma 2. For an elliptic element σ, we have

$$
\begin{equation*}
J(\sigma, \delta)=\frac{1}{\delta} \frac{8 \pi^{2}}{(\Gamma(\sigma):\{ \pm I\})} \frac{1}{\zeta-\bar{\zeta}} F\left(1, \frac{\delta}{2}, 1+\delta ; 1+\zeta^{2}\right) \chi(\sigma), \tag{11}
\end{equation*}
$$

(F, ζ being the hypergeometric function, and an eigenvalue of σ chosen as in [4, § 1]).

The divergence part of the sum of $J(\sigma, \delta)$ over Γ_{∞} and Γ_{0} is just canceled by that of $H_{\delta}([3])$. Take $Y \gg 0, D_{Y}=\{z ; 0 \leqq x \leqq 1,0 \leqq y \leqq Y\}$ and $\sigma_{\kappa} \in G$ such that $\sigma_{\kappa}(\infty)=\kappa, \sigma_{k}^{-1} \Gamma_{\kappa} \sigma_{\kappa}=\Gamma_{\infty}$. In the same way as in [4], we get

Lemma 3. The contribution from the cusp at κ is given as

$$
\begin{aligned}
& 2 \pi \lim _{Y \rightarrow \infty}\left\{\sum_{\substack{\sigma \in \sum_{K}(\{) \pm \Gamma\} \\
\sigma \neq\{ \pm T\}}} \int_{\sigma_{k} D_{Y}} \omega_{\delta}(z, 0 ; \sigma(z, 0)) d z\right. \\
& \left.-\int_{\sigma_{\kappa} D_{Y}}-\frac{1}{4 \pi} \int_{-\infty}^{\infty} h_{\delta}(r) E_{\kappa}^{*}(z, 0, \chi, t) \overline{E_{k}^{*}(z, 0, \chi, t)} d r d z\right\} \\
& =-\frac{1}{2 \pi} \int_{-\infty}^{\infty} h_{1+\delta}(r) \frac{\Gamma\left(\frac{1+\delta}{2}\right) \Gamma\left(\frac{3+\delta}{2}\right)}{\Gamma\left(1+\frac{\delta}{2}\right)^{2}} \psi(1+i r) d r-\log (2) g_{\delta}(0) \\
& \begin{array}{r}
+\frac{\Gamma\left(\frac{1+\delta}{2}\right) \Gamma\left(\frac{3+\delta}{2}\right)}{4 \Gamma\left(1+\frac{\delta}{2}\right)^{2}} h_{1+\delta}(0)+\frac{1}{4 \pi} \int_{-\infty}^{\infty} h_{\delta}(r) m_{\kappa \mu \mu}(t, \chi) \overline{m_{\kappa \mu}^{\prime}(t, \chi)} d r \\
\quad(t=(1 / 2)+i r, \mu \neq \kappa) .
\end{array}
\end{aligned}
$$

The last term of (12) is transformed into

$$
\begin{aligned}
& \log \left(\pi / p^{2 / 3}\right) g_{\delta}(0)-\frac{1}{2 \pi} \int_{-\infty}^{\infty} h_{\delta}(r) \psi(1+i r) d r \\
& -\frac{1}{2 \pi} \int_{-\infty}^{\infty} h_{\delta}(r)\left(\frac{L^{\prime}(2 t, \chi)}{L(2 t, \chi)}+\frac{L^{\prime}(2 t, \bar{\chi})}{L(2 t, \bar{\chi})}\right) d r
\end{aligned}
$$

Since each term in (11), (12) is a holomorphic function in $\operatorname{Re}(\delta)>0$, we get Theorem 1.

References

[1] Godement, R.: The spectral decomposition of Cusp forms. Proc. Sympos. Pure Math., 9, Amer. Math. Soc., 226-233 (1966).
[2] Hejhal, D. A.: The Selberg trace formula for $\operatorname{PSL}(2, R)$. vol. 2. Lecture Notes in Math., vol. 1001, Springer, Berlin (1983).
[3] Hiramatu, T.: On some dimension formula for automorphic forms of weight one, II (preprint).
[4] Ishikawa, H.: On the trace formula for Hecke operators. J. Fac. Sci. Univ. Tokyo, 20, 217-238 (1973).
[5] Kubota, T.: Elementary Theory of Eisenstein Series. Kodansha, Tokyo (1973).
[6] Selberg, A.: Harmonic analysis and discontinuous groups on weakly symmetric Riemann spaces with application to Dirichlet series. J. Indian Math. Soc., 20, 47-87 (1956).
[7] Serre, J.-P.: Modular forms of weight one and Galois representations. Algebraic number fields: L-functions and Galois properties. Proc. Sympos., Univ. Durham 1975, pp. 193-268. Academic Press, London (1977).
[8] Shimizu, H.: On traces of Hecke operators. J. Fac. Sci. Univ. Tokyo, 10, 1-19 (1963).

[^0]: *) Department of Mathematics, College of Arts and Sciences, Okayama University.
 **) Department of Mathematics, Faculty of Science, Nagoya University.

