58. On a Problem of R. Brauer on Zeta-Functions of Algebraic Number Fields. II

By Ken-ichi Sato
Faculty of Engineering, Nihon University
(Communicated by Shokichi Iyanaga, m. J. A., June 9, 1987)

1. Let K_{1}, K_{2} be algebraic number fields of finite degrees. Put $K=K_{1} K_{2}, k=K_{1} \cap K_{2}$ and consider the following quotient of Dedekind zetafunctions:

$$
\zeta_{K_{1}, K_{2}}(s)=\zeta_{K}(s) \cdot \zeta_{k}(s) / \zeta_{K_{1}}(s) \cdot \zeta_{K_{2}}(s) .
$$

It was shown by R. Brauer [1] that $\zeta_{K_{1}, K_{2}}(s)$ is an entire function of s, if K_{1} / k and K_{2} / k are normal. In our previous note [2], we called R. Brauer's problem the question asking for other cases in which $\zeta_{K_{1}, K_{2}}(s)$ becomes entire. We proved that this takes place in the following cases:
(i) $K_{1}=Q(\sqrt[p]{a}), K_{2}=Q(\sqrt[p]{b})$, where p is an odd prime and a, b are relatively prime p-free integers $\neq 1$.
(ii) $K_{1}=Q(\sqrt[p]{a}), K_{2}=Q(\sqrt[q]{b})$ where p, q are distinct odd primes and a, b are relatively prime, respectively p-free and q-free integers $\neq 1$.

In the present note, we shall show that these results can be derived in a generalized form from a theorem on "supersolvable extensions" as stated below. The letters k, K, L, M (sometimes with suffixes) will denote throughout this note algebraic number fields of finite degrees.
2. If K / k is normal and $\operatorname{Gal}(K / k)$ is supersolvable, K / k itself will be called supersolvable. Then there exists a chain of intermediate fields $K=k_{\nu} \supset k_{\nu-1} \supset \cdots \supset k_{0}=k$ such that all k_{i} / k are normal and $k_{i} \supset k_{i-1}$ are cyclic, $i=\nu, \nu-1, \cdots, 1$. It is known that if K / k is supersolvable, the Artin L-function $L(s, \chi, K / k)$ for every non-principal character χ of Gal (K / k) is entire (cf. [3]).

Theorem. Let $K=K_{1} K_{2}, k=K_{1} \cap K_{2}$. Let $M / k, M_{1} / k$ be galois closures of $K / k, K_{1} / k$ respectively. If M / k is supersolvable and $M_{1} \cap K_{2}=k$, then $\zeta_{K_{1}, K_{2}}(s)$ is entire.

Proof. Put $G=\operatorname{Gal}(M / k), G_{1}=\operatorname{Gal}\left(M_{1} / k\right), H_{1}=\operatorname{Gal}\left(M_{1} / K_{1}\right)$. Then we have after $\operatorname{Artin} \zeta_{K_{1}}(s)=L\left(s, 1_{H_{1}}, M_{1} / K_{1}\right)=L\left(s, 1_{H_{1}}^{G_{1}}, M_{1} / k\right)$, where $1_{H_{1}}$ is the principal character of H_{1} and $1_{H_{1}}^{G_{1}}$ the same character induced to G_{1}. Likewise $\zeta_{k}(s)=L\left(s, 1_{G_{1}}, M_{1} / k\right)$. Now we can write $1_{H_{1}}^{G_{1}}=1_{G_{1}}+\sum_{i} \lambda_{i}$, where λ_{i} are nonprincipal irreducible characters of G_{1}, so that we obtain
(1) $\zeta_{K_{1}}(s) / \zeta_{k}(s)=\prod_{i} L\left(s, \lambda_{i}, M_{1} / k\right)=\prod_{i} L\left(s, \tilde{\lambda}_{i}, M / k\right)$. Here $\tilde{\lambda}_{i}$ is the character λ_{i} lifted to $\operatorname{Gal}(M / k)$. We give the following diagram for the sake of convenience.

Put $M_{1}^{\prime}=M_{1} K=M_{1} K_{2}$, then M_{1}^{\prime} / K_{2} is normal and $\operatorname{Gal}\left(M_{1}^{\prime} / K_{2}\right) \cong \operatorname{Gal}\left(M_{1} / k\right)$ $=G_{1}$ so that just as above
(2)

$$
\begin{aligned}
\zeta_{K}(s) / \zeta_{K_{2}}(s) & =\prod_{i} L\left(s, \lambda_{i}, M_{1}^{\prime} / K_{2}\right) \\
& =\prod_{i} L\left(s, \tilde{\lambda}_{i}, M / K_{2}\right)=\prod_{i} L\left(s, \tilde{\lambda}_{i}^{G}, M / k\right)
\end{aligned}
$$

where $\tilde{\lambda}_{i}^{G}$ is the lifted character $\tilde{\lambda}_{i}$ induced to G, which can be written in the form $\tilde{\lambda}_{i}+\sum_{j} \lambda_{i j}^{\prime}$, where $\lambda_{i j}^{\prime}$ are non-principal irreducible characters of G. Thus dividing (2) by (1), we see that $\zeta_{K_{1}, K_{2}}(s)$ is equal to a product of the form $\prod_{i, j} L\left(s, \lambda_{i j}^{\prime}, M / k\right)$ which is entire.
3. Now let m, n be any given natural numbers $\geqq 2$ and $a, b \in Z$.

Lemma 1. The galois closure K of $\boldsymbol{Q}(\sqrt[n]{a}, \sqrt[n]{b})$ over \boldsymbol{Q} is supersolvable.

Proof. Let l be the L. C. M. of m, n, and put $\omega=\exp (2 \pi i / l), \boldsymbol{Q}(\omega)=L_{0}$, $\boldsymbol{Q}(\sqrt[m]{a}, \sqrt[n]{b})=K_{0}, L_{0} K_{0}=L, \boldsymbol{Q}=k$. Then L / k is normal, $L \supset K \supset k$ and K / k is normal. It suffices clearly to show that L / k is supersolvable. Now $L \supset L_{0} \supset k, L / L_{0}$ is Kummerian and L_{0} / k is cyclotomic. So it is easy to construct a chain of intermediate fields $L=k_{\nu} \supset k_{\nu-1} \supset \cdots \supset k_{\rho}=L_{0} \supset k_{\rho-1} \supset \cdots$ $\supset k_{0}=k$ such that k_{i} / k are normal and k_{i} / k_{i-1} are cyclic, $i=\nu, \nu-1, \cdots, 1$.

For a prime p and $a \in Z, v_{p}(\alpha)$ denotes as usual the natural number such that $p^{v_{p}(a)} \| a$. If $\left(m, v_{p}(a)\right)=1, p$ will be called an m-proper prime divisor of a. The product of all m-proper prime divisors of a will be denoted by $(\alpha)_{m}$. If $(\alpha)_{m} \neq 1$, the degree of $\boldsymbol{Q}(\sqrt[m]{a})$ over \boldsymbol{Q} is m and every m proper prime divisor is completely ramified in $\boldsymbol{Q}(\sqrt[m]{a})$. The galois closure of $\boldsymbol{Q}(\sqrt[m]{a})$ (over $\boldsymbol{Q})$ is contained in $\boldsymbol{Q}(\sqrt[m]{a}, \exp (2 \pi i / m)$). The degree of this latter field divides $m \varphi(m)$, where φ is the Euler function and the only primes that can be ramified in it are divisors of ma. From these facts we obtain;

Lemma 2. Suppose $(a)_{m} \neq 1,(b)_{n} \neq 1$ and put $K_{1}=\boldsymbol{Q}(\sqrt[m]{a}), K_{2}=\boldsymbol{Q}(\sqrt[n]{b})$, $K=K_{1} K_{2}, k=K_{1} \cap K_{2}$. If $(m, n)=1$ or $\left((a)_{m},(b)_{n}\right)=1$, we have $k=\boldsymbol{Q}$, and if moreover $\left(m a,(b)_{n}\right)=1$ or $(m \varphi(m), n)=1$, we have $M_{1} \cap K_{2}=k$, where M_{1} / k is the galois closure of K_{1} / k.

In virtue of these Lemmas our theorem yields the following Corollary from which our previous results (i), (ii) follow immediately.

Corollary. Let $(a)_{m} \neq 1,(b)_{n} \neq 1$ and $(m, n)=1$ or $\left((a)_{n},(b)_{n}\right)=1$. Then $\zeta_{K_{1}, K_{2}}(s)$ is entire, if $\left(m a,(b)_{n}\right)=1$ or $\left((a)_{m}, n b\right)=1$ or $(m \varphi(m), n)=1$ or ($m, n \varphi(n)$) $=1$.

Acknowledgement. I would like to thank Profs. S. Iyanaga and H. Wada for reading this note in manuscript and giving helpful advice for its improvement.

References

[1] R. Brauer: A note on zeta-functions of algebraic number fields. Acta Arith., 24, 325-327 (1973).
[2] K. Sato: On a problem of R. Brauer on zeta-functions of algebraic number fields. Proc. Japan Acad., 61A, 305-307 (1985).
[3] K. Uchida: On Artin L-functions. Tôhoku Math. J., 27, 75-81 (1975).

