56. On Uniform Distribution of Sequences

By P. Kiss*),t) and R. F. Tichy**)
(Communicated by Shokichi Ifanaga, m. J. A., June 9, 1987)

Let $z: z_{0}=0<z_{1}<z_{2} \cdots$ be a subdivision of the interval [0, ∞) with $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$. For an increasing sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of non-negative real numbers, define the sequence (i_{n}) of positive integers by

$$
z_{i_{n}-1} \leqq x_{n}<z_{i_{n}} .
$$

Then $\left(x_{n}\right)$ is said to be uniformly distributed modulo the subdivision z if the sequence

$$
\begin{equation*}
\left\{x_{n}\right\}_{z}=\frac{x_{n}-z_{i_{n-1}}}{z_{i_{n}}-z_{i_{n}-1}} \tag{1}
\end{equation*}
$$

is uniformly distributed $\bmod 1$, i.e., if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(1 / N) A\left(x, N,\left\{x_{n}\right\}_{z}\right)=x \quad(0 \leqq x \leqq 1), \tag{2}
\end{equation*}
$$

where $A\left(x, N,\left\{x_{n}\right\}_{z}\right)$ denotes the number of indices $n, 1 \leqq n \leqq N$ such that $\left\{x_{n}\right\}_{z}$ is less than x.

The following distribution properties of the sequence $\left(x_{n}\right)=(n \theta)(\theta$ an arbitrary positive real number) are well-known:
(i) If $z_{n}-z_{n-1} \rightarrow \infty$ and $z_{n} / z_{n-1} \rightarrow 1$ as $n \rightarrow \infty$, then $\left(x_{n}\right)$ is uniformly distributed $\bmod z(\mathrm{~W} . \mathrm{J} . \operatorname{Le}$ Veque [6]).
(ii) If $z_{n}-z_{n-1}$ is decreasing, then $\left(x_{n}\right)$ is uniformly distributed $\bmod z$ for almost all θ; this result also holds in the case $\left(x_{n}\right)=\left(n^{\gamma} \theta\right)$ for any fixed $r>0$ (H. Davenport and W. J. Le Veque [3]).
(iii) If $z_{n} / z_{n-1} \rightarrow 1$ as $n \rightarrow \infty$ and if the number of terms z_{n} with $z_{n} \leqq N$ is less than $c \cdot N^{2-\delta}(c, \delta>0)$, then $\left(x_{n}\right)$ is uniformly distributed $\bmod z$ for almost all θ (H. Davenport and P. Erdös [2]).

In the following we prove a generalization of some of these results by an elementary method (cf. [7]). For this purpose we define a sequence (x_{n}) to be almost uniformly distributed $\bmod z$ if there is an infinite sequence $N_{1}<N_{2}<\cdots$ of positive integers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1 / N_{i}\right) A\left(x, N_{i},\left\{x_{n}\right\}_{z}\right)=x \quad(0 \leqq x \leqq 1) ; \tag{3}
\end{equation*}
$$

see Definitions 1.2 and 7.2 in the monograph of L. Kuipers and H. Niederreiter [5]. For further results on uniform distribution modulo a subdivision see Burkhard [1], P. Kiss [4].

Theorem. Let θ be a positive real number and let $z=\left(z_{n}\right)$ be an increasing sequence of real numbers with conditions $z_{0}=0$ and $z_{n} / n \rightarrow \infty$ as $n \rightarrow \infty$. Then the sequence $\left(x_{n}\right)=(\theta n)(n=1,2, \cdots)$ is almost uniformly distributed

[^0]modulo z. It is uniformly distributed $\bmod z$ if and only if $\lim _{n \rightarrow \infty}\left(z_{n} / z_{n-1}\right)=1$.
Proof. Let x be a real number with $0<x<1$ and let
$$
S_{N}=\sum_{n=1}^{M} \sum_{z_{n-1}\left\langle<_{k} \leq z_{n},\right.} \chi_{[0, x)}\left(\frac{x_{k}-z_{n-1}}{z_{n}-z_{n-1}}\right),
$$
where $\chi_{[0, x)}$ is the characteristic function of the interval $[0, x)$ and $M=M(N)$ is an integer defined by
$$
z_{M-1}<x_{N} \leqq z_{M} .
$$

The definition of M implies that there is a real number $\lambda(0<\lambda \leqq 1)$ such that

$$
\begin{equation*}
N=(1 / \theta)\left(z_{M-1}+\lambda\left(z_{M}-z_{M-1}\right)\right) . \tag{4}
\end{equation*}
$$

Using the notation $\Delta z_{n}=z_{n}-z_{n-1}$ we derive from

$$
0 \leqq \frac{x_{k}-z_{n-1}}{\Delta z_{n}}<x
$$

that

$$
(1 / \theta) z_{n-1} \leqq k<(1 / \theta)\left(z_{n-1}+x \Delta z_{n}\right) .
$$

Hence we have

$$
\begin{equation*}
\sum_{z_{n-1}<x_{k} \leq z_{n}} \chi_{[0, x)}\left(\frac{x_{k}-z_{n-1}}{\Delta z_{n}}\right)=\frac{x \Delta z_{n}}{\theta}+O(1) \tag{5}
\end{equation*}
$$

for every n with $n<M$.
Let first $\lambda \geqq x$. In this case, (5) holds also for $n=M$, and so

$$
S_{N}=\sum_{n=1}^{M}\left(\frac{x \Delta z_{n}}{\theta}+O(1)\right)=\frac{x z_{M}}{\theta}+O(M) .
$$

Thus by (4) we obtain

$$
\begin{equation*}
\frac{S_{N}}{N}=\frac{x z_{M}+O(M)}{z_{M-1}+\lambda\left(z_{M}-z_{M-1}\right)}=x\left(\frac{z_{M-1}}{z_{M}}(1-\lambda)+\lambda\right)^{-1}+O\left(\frac{M}{z_{M}}\right) \tag{6}
\end{equation*}
$$

Now let $0<\lambda<x$. In this case we have

$$
\sum_{\substack{z_{M-1}<x_{k}<z_{M}, z_{<}<N}} \chi_{[0, x)}\left(\frac{x_{k}-z_{M-1}}{\Delta z_{M}}\right)=N-\frac{z_{M-1}}{\theta}+O(1)=\frac{1}{\theta} \lambda\left(z_{M}-z_{M-1}\right)+O(1),
$$

and so by (5)

$$
S_{N}=\sum_{n=1}^{M-1} \frac{x \Delta z_{n}}{\theta}+\frac{1}{\theta} \lambda \Delta z_{M}+O(M)=\frac{1}{\theta}\left(x z_{M-1}+\lambda\left(z_{M}-z_{M-1}\right)\right)+O(M) .
$$

Similarly as above we derive in this case

$$
\begin{equation*}
\frac{S_{N}}{N}=\frac{x+\lambda\left(\left(z_{M} / z_{M-1}\right)-1\right)}{1+\lambda\left(\left(z_{M} / z_{M-1}\right)-1\right)}+O\left(\frac{M}{z_{M}}\right) . \tag{7}
\end{equation*}
$$

By (6) and (7), since $M / z_{M} \rightarrow 0$ as $M \rightarrow \infty$,

$$
\lim _{N \rightarrow \infty} S_{N} / N=x
$$

does not depend on λ if and only if $\lim _{M \rightarrow \infty} z_{M} / z_{M-1}$ exists and equals to 1 . Thus the second assertion of the theorem is proved. Let N_{1}, N_{2}, \ldots be the sequence of natural numbers defined by $N_{i}=\left[z_{i} / \theta\right]$, where [•] denotes the integer part function. For these integers, similarly as above we obtain

$$
\frac{S_{N_{i}}}{N_{i}}=\frac{x z_{M\left(N_{i}\right)}+O\left(M\left(N_{i}\right)\right)}{z_{M\left(N_{i}\right)}+O(1)}=x+O\left(\frac{M\left(N_{i}\right)}{z_{M\left(N_{i}\right)}}\right) .
$$

Hence

$$
\lim _{i \rightarrow \infty} S_{N_{i}} / N_{i}=x
$$

i.e. is $\left(x_{n}\right)$ is almost uniformly distributed $\bmod z$. This completes the proof of the theorem.

References

[1] R. E. Burkhard: Zur Gleichmössigen Gleichrerteilung von Polynomwerten modulo 4. Sitzungsber. Österr. Akad. Wiss., math.-naturwiss. Kl., 177, 395-406 (1969).
[2] H. Davenport and P. Erdös: A theorem on uniform distribution. Magyar Tud. Akad. Mat. Kutató Int. Közl., 8, 3-11 (1963).
[3] H. Davenport and W. J. Le Veque: Uniform distribution relative to a fixed sequence. Michigan Math. J., 10, 315-319 (1963).
[4] P. Kiss: Note on distribution of the sequence $n \theta$ modulo a linear recurrence. Discuss. Math., 7, 135-139 (1985).
[5] L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences. John Wiley, New York-London-Sydney-Toronto (1974).
[6] W. J. Le Veque: On uniform distribution modulo a subdivision. Pacific J. of Math., 3, 757-771 (1953).
[7] Y. Ohkubo: Discrepancy with respect to weighted means of some sequences. Proc. Japan Acad., 62A, 201-204 (1986).

[^0]: ${ }^{\dagger)}$ Research partially supported by Hungarian National Foundation for Scientific Research Grant No. 273.
 *) Teachers' Training College, Eger, Hungary.
 **) Department of Technical Mathematics, Technical University of Vienna, Vienna, Austria.

