49. A Result on the Scattering Theory for First Order Systems with Long-range Perturbations

Ву Којі КІКИСНІ

Department of Mathematics, Osaka University

(Communicated by Kôsaku YOSIDA, M. J. A., June 9, 1987)

In this report we treat the following differential equation for C^{m} -valued function :

$$D_t u = \Lambda u$$
,

where $D_t = (1/i)(\partial/\partial t)$ and

(1)
$$\Lambda = E(x)^{-1/2} \sum_{j=1}^{n} A_{j} D_{j} E(x)^{-1/2},$$

 A_j 's are $m \times m$ constant hermitian matrices, and E(x) is a continuous $m \times m$ hermitian matrix valued function with

$$0 < c_1 I \leq E(x) \leq c_2 I$$

for some constants c_1 and c_2 . Λ can be extended to a self-adjoint operator on $\mathcal{H} = L^2(\mathbb{R}^n)$. If we substitute E(x) with I in (1), we have a differential operator of constant coefficients:

$$\Lambda^{0} = \sum_{j=1}^{n} A_{j} D_{j}.$$

 Λ^{0} can also be extended to a self-adjoint operator on \mathcal{H} , and Λ is regarded as a perturbed operator of Λ^{0} . The main result which we shall report here is the existence theorem of the wave operator between Λ^{0} and Λ . We consider the case that the perturbation is long-range. More precisely we assume that

Assumption (E). 1) $E(x) \in C^{\infty}(\mathbb{R}^n)$. 2) $|\partial_x^{\alpha}(E(x)-I)| \leq (1+|x|)^{-\delta-|\alpha|}$ for $\delta > 0$ and $|\alpha| \geq 0$. The operator W_{\pm} is called the wave operator if the limit (2) $W_{\pm}u = \lim e^{itA}e^{-itA^0}u$ $(u \in \mathcal{H}_{ac}(A^0))$

exists. In the case of the short-range $(\delta > 1)$ it is already known that, for wide class of Λ^0 , W_{\pm} exists and is complete (see for example [3]). But it does not exist generally when the perturbation is long-range $(0 < \delta \le 1)$. Then we should consider the modified wave operator. The fundamental problems of the theory of long-range perturbation are the existence and completeness of the modified wave operator. However few works have been treated related to the spectral theory of systems with long-range perturbations. There are only the works related to the limiting absorption principle ([3], [4]). Then unlike the case of the short-range the existence theorem is the first step of this theory.

On Λ^0 we assume the following. We put

$$\Lambda^{\scriptscriptstyle 0}(\xi) = \sum_{j=1}^n A_j \xi_j \qquad \text{(symbol of } \Lambda^{\scriptscriptstyle 0}\text{)}.$$

Then

Assumption (F). 1) Λ^0 is strongly propagative, that is, for some drank $\Lambda^0(\xi) = m - d$ when $\xi \neq 0$.

2) We put

$$\rho_0 = \max_{\xi \in \mathbb{R}^n} \# \{ \text{distinct positive eigenvalues of } \Lambda^0(\xi) \},\$$

and

$$\rho_0 = (m-d)/2.$$

Remark. The condition 2) is equivalent to that the multiplicities are all simple for almost all $\xi \in \mathbb{R}^n$.

Example (Maxwell equation). We consider the Maxwell equation in crystals:

$$\nabla \times H - \varepsilon (\partial E / \partial t) = 0, \qquad \nabla \times E + \mu_0 (\partial H / \partial t) = 0$$

where $\varepsilon = (\varepsilon_{ij})$ is a tensor dielectric constant and μ_0 is a scalar magnetic permeability. Let $\varepsilon_1, \varepsilon_2$ and ε_3 be eigenvalues of ε . We may assume that $\varepsilon_1 \ge \varepsilon_2 \ge \varepsilon_3 > 0$.

There are three classes which are defined by the condition (i) $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$, (ii) $\varepsilon_1 > \varepsilon_2 = \varepsilon_3$ or $\varepsilon_1 = \varepsilon_2 > \varepsilon_3$ and (iii) $\varepsilon_1 = \varepsilon_2 = \varepsilon_3$ (isotropic). The classes (i) and (ii) satisfy Assumption (F), and the class (iii) does not satisfy (refer to C. H. Wilcox [5]).

The eigenvalues of $\Lambda^{0}(\xi)$ can be enumerated as follows :

 $\lambda_{\rho_0}^0(\xi) \ge \cdots \ge \lambda_0^0(\xi) \ge 0 > \lambda_{-1}^0(\xi) \ge \cdots \ge \lambda_{-\rho_0}^0(\xi).$ And $\hat{P}_k^0(\xi)$ denotes the projection onto the eigenspace associated with $\lambda_k^0(\xi)$.

 $\bar{Z}_{S}^{(1)}$ denotes a set given by

 $ar{Z}_{S}^{\scriptscriptstyle(1)}\!=\!\{{m\xi}\in{m R}^{n}\,;\,\lambda_{j}^{\scriptscriptstyle 0}({m\xi})\!=\!\lambda_{k}^{\scriptscriptstyle 0}({m\xi})\,\, ext{for some }j\!
eq\!k\}.$

We put $\Lambda(x, \xi) = E(x)^{-1/2} \Lambda^{0}(\xi) E(x)^{-1/2}$ and

$$\rho(x) = \max_{\xi \in \mathbb{R}^n} \# \{ \text{distinct positive eigenvalues of } \Lambda(x, \xi) \}$$

Then the eigenvalues of $\Lambda(x,\xi)$ are also enumerated as

 $\lambda_{\rho(x)}(x,\xi) \geq \cdots \geq \lambda_1(x,\xi) > \lambda_0^0(\xi) \equiv 0$

$$>\lambda_{-1}(x,\xi)\geq\cdots\geq\lambda_{-\rho(x)}(x,\xi)$$

 $\hat{P}_{k}(x,\xi)$ and $\bar{Z}_{S_{x}}^{(1)}$ can also be defined similarly.

Then we have

Proposition. Under Assumptions (E) and (F) the following facts hold:

i) There exists an R > 0 such that

$$\rho(x) = \rho_0$$
 when $|x| > R$.

ii) There exists a family of open neighborhoods $\{V_r\}_{r>R}$ of $\bar{Z}_{S}^{(1)}$ such that $\bigcup_{r>R} V_r = \bar{Z}_{S}^{(1)}$

$$\bar{Z}^{(1)}_{S_x} \subset V_r$$
 for $|x|=r$.

iii) Let $K \subset \mathbb{R}^n \setminus \overline{Z}_s^{(1)}$ be compact. Take R of i) so large that $K \cap V_r = \emptyset$ if r > R. Then

$$|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}(\lambda_{k}(x,\xi)-\lambda_{k}^{0}(\xi))|\leq C_{\xi}\langle x\rangle^{-\delta-|\beta|}$$

180

for $|\alpha|, |\beta| \ge 0$ and $(x, \xi) \in \{|x| > R\} \times K$.

 $\text{iv}) \qquad |\partial_{\xi}^{a}\partial_{x}^{\beta}(\hat{P}_{k}(x,\xi)-\hat{P}_{k}^{0}(\xi))| \leq C_{\xi}\langle x \rangle^{-\delta-|\beta|}$

for $|\alpha|, |\beta| \ge 0$ and $(x, \xi) \in \{|x| > R\} \times K$.

Here C_{ξ} is uniform for $(x, \xi) \in \{|x| > R\} \times K$.

As stated above the limit (2) does not exist when the perturbation is long-range. We seek the modified wave operator as the following form:

$$W^{D}_{\pm}u = \lim_{t \to +\infty} e^{itA}X_{\iota}u \qquad (u \in \mathcal{H}_{ac}(\Lambda^{0})).$$

Here X_t is an operator on \mathcal{H} given by

$$X_{t} u = \sum_{|k|=1}^{\rho_{0}} (2\pi)^{-n} \int_{\mathcal{Q}_{t}} e^{i x \xi - i W_{k}(t,\xi)} \hat{P}_{k}(\nabla W_{k}(t,\xi),\xi) \hat{u}(\xi) d\xi,$$

where $W_k(t,\xi)$'s are functions constructed in the lemma given soon later and Ω_t 's are open domains defined by

 $\Omega_t = \Omega_t \qquad \text{for } t \in [t_i, t_{i+1})$

with $\{t_i\}$ and $\{\Omega_i\}$ given in the same lemma.

Then we state the lemma in the case of $t \rightarrow \infty$.

Lemma. Under Assumptions (E) and (F), let $\{t_i\}_{i=1}^{\infty}$ be a given sequence with $t_1 < t_2 \cdots$ and $\lim_{t \to \infty} t_t = \infty$. Then there exists a sequence of conic open sets $\{\Omega_i\}_{i=0}^{\infty}$ with $\Omega_0 \subset \Omega_1 \subset \cdots$ and $\bigcup_{i=0}^{\infty} \Omega_i = \mathbf{R}^n \setminus \overline{Z}_S^{(1)}$, and there exists a solution of the Hamilton-Jacobi equations

 $\partial W_k/\partial t = \lambda_k(\nabla W_k, \xi)$ $(|k|=1, 2, \cdots, \rho)$

on $\bigcup_{i=1}^{\infty} [t_i, \infty) \times \Omega_i$ which satisfies, for any $\xi \in K \subset \mathbb{R}^n \setminus \overline{Z}_S^{(1)}$ a compact set.

- 1) If t is sufficiently large, $V_{|FW_k|} \cap K = \emptyset$.
- 2) $|\partial_{\xi}^{\alpha}W_{k}(t,\xi)| \leq C_{\alpha}t \text{ for } |\alpha| \geq 1.$
- 3) $|\partial_{\xi}^{\alpha}(t^{-1}W_{k}(t,\xi)-\lambda_{k}^{0}(\xi))|+|\partial_{\xi}^{\alpha}(\lambda_{k}(\nabla W_{k},\xi)-\lambda_{k}^{0}(\xi))|\leq C_{\alpha}t^{-\delta} for |\alpha|\geq 0.$
- 4) For r > 0, $W_k(t, r\xi) = rW_k(t, \xi)$.
- 5) $W_k(t, -\xi) = -W_{-k}(t, \xi).$

The proof of this lemma is similar to that of Theorem 3.8 of [1]. The main result is stated as the following.

Theorem. The modified wave operator

$$W^{D}_{\pm} = \operatorname{s-lim}_{t \to \pm \infty} e^{i t A} X_{t}$$

exists, and it is a partial isometric operator with the intertwining property $e^{isA}W^{D}_{\pm}u = W^{D}_{\pm}e^{isA^{0}}u$ for $s \in \mathbf{R}$ and $u \in \mathcal{H}_{ac}(\Lambda^{0})$.

Details and the proof of this theorem are given in [2].

References

- L. Hörmander: The existence of wave operators in scattering theory. Math. Z., 146, 69-91 (1976).
- [2] K. Kikuchi: Scattering theory for first order systems with long-range perturbations: The existence of the modified wave operators (preprint).
- [3] H. Tamura: Spectral and scattering theory for symmetric systems of nonconstant deficit. J. Funct. Anal., 67, 73-104 (1986).
- [4] R. Weder: Spectral analysis of strongly propagative systems. J. Angewandte Math., 354, 95-122 (1984).
- [5] C. H. Wilcox: Electromagnetic signal propagation in crystals. Appl. Anal., 8, 83-94 (1978).

No. 6]