6. Variations of Pseudoconvex Domains in the Complex Manifold

By Hiroshi YAMAGUCHI Faculty of Educations, University of Shiga (Communicated by Kunihiko KodAIRA, M. J. A., Jan. 12, 1987)

Introduction. In the *n*-dimensional complex vector space C^n with standard norm $||z||^2 = |z_1|^2 + \cdots + |z_n|^2$ for $z = (z_1, \dots, z_n) \in C^n$, let *D* be a relatively compact domain of C^n with smooth boundary. Given $\zeta \in D$, *D* carries the Green's function G(z) with pole at ζ for the Laplace equation $\Delta G = (\partial^2/\partial z_1\partial \bar{z}_1 + \cdots + \partial^2/\partial z_n\partial \bar{z}_n)G = 0$. The function G(z) is expressed in the form

$$G(z) = \begin{cases} -\log |z - \zeta| + \lambda + H(z) & (n \equiv 1) \\ \|z - \zeta\|^{-2n+2} + \lambda + H(z) & (n \geq 2) \end{cases}$$

where λ is a constant, H(z) is harmonic in D and $H(\zeta)=0$. The constant term λ is called the Robin constant for $(D, \{\zeta\})$. When D varies in \mathbb{C}^n with parameter t, so does λ with t. This is realized as follows: Let B be a domain of the t-complex plane containing the origin O. We let correspond to each $t \in B$ a relatively compact domain D(t) of \mathbb{C}^n with smooth boundary such that $D(t) \ni \zeta$ for all $t \in B$ and D(O)=D, and denote by $\lambda(t)$ the Robin constant for $(D(t), \{\zeta\})$. Consequently, $\lambda(t)$ defines a real-valued function on B. In [6] we showed

Theorem 1. If the set $\tilde{D} = \{(t, z) \in B \times C^n | z \in D(t)\}$ is a pseudoconvex domain in $B \times C^n$, then $\lambda(t)$ is a superharmonic function on B.

In this note we extend Theorem 1 to the case when D(t) are domains in a complex manifold M.

1. Let *M* be a (compact or non-compact) connected complex manifold of dimension *n*. In this note we always assume that $n \ge 2$, for we studied in [5] the case of n=1. Let $ds^2 = \sum_{\alpha,\beta=1}^n g_{\alpha\beta} dz_{\alpha} \otimes d\bar{z}_{\beta}$ be a Hermitian metric on *M*. For notations we follow [3]. We put

$$\omega = i \sum_{lpha,eta=1}^n g_{lphaeta} dz_{lpha} \wedge dar{z}_{eta}, \qquad \omega^n = (i)^n \, n \, ! \, g(z) dz_1 \wedge dar{z}_1 \wedge \cdots \wedge dz_n \wedge dar{z}_n, \ arDelta = -(*\partial *ar{\partial} + *ar{\partial} *\partial) = -2 \Big\{ \sum_{lpha,eta=1}^n g^{lphaeta} rac{\partial^2}{\partialar{z}_{lpha}\partial z_{eta}} + \operatorname{Re} \sum_{lpha,eta=1}^n rac{1}{g} \, rac{\partial(gg^{lphaeta})}{\partialar{z}_{lpha}} rac{\partial}{\partial z_{eta}} \Big\},$$

where $i^2 = -1$, $g(z) = \det(g_{\alpha\beta}(z))$ and $(g^{\alpha\beta}(z)) = (g_{\alpha\beta}(z))^{-1}$. If a function u defined in a domain of M is of class C^2 and satisfies $\Delta u = 0$, then u is said to be harmonic. For $\zeta \in M$ and a neighborhood U of ζ , we denote by $E(\zeta, U, ds^2)$ the set of all elementary solutions $E(\zeta, z)$ for $\Delta E(\zeta, z) = 0$ on $U \times U$ except for the diagonal set (see K. Kodaira [2], p. 612).

In what follows, if M is compact, then we assume $D \neq M$. Moreover, we suppose $\zeta \in D$ and $E(\zeta, z) \in E(\zeta, U, ds^2)$.

First, consider the case where D is a relatively compact domain of M

H. YAMAGUCHI

with smooth boundary ∂D . Then D carries the Green's function G(z) of D with pole at ζ which is uniquely determined by three conditions: G is harmonic in D except at ζ , G(z)=0 continuously on ∂D and $\lim_{z\to\zeta} G(z)$ $\times r(z,\zeta)^{2n-2}=1$, where $r(z,\zeta)$ denotes the geodesic distance from z to ζ with respect to ds^2 . Then G is expressed in a neighborhood of ζ in the form $G(z)=E(\zeta,z)+\lambda+H(z)$,

where λ is a constant, H(z) is harmonic and $H(\zeta) = 0$. The constant term λ is called the Robin constant for $(D, \{\zeta\})$ which corresponds to $E(\zeta, z)$.

Next, consider the case where D is a domain of M. Choose a sequence of relatively compact subdomains D_p $(p=1,2,\cdots)$ of D with smooth boundary such that $\zeta \in D_1$, $D_p \cup \partial D_p \subset D_{p+1}$ and $\bigcup_{p=1}^{\infty} D_p = D$. Each D_p carries the Green's function G_p with pole at ζ and the Robin constant λ_p for $(D_p, \{\zeta\})$ which corresponds to $E(\zeta, z)$. Since $G_p(z)$ and λ_p increase with p, the limits $G(z) = \lim_{p \to \infty} G_p(z)$ and $\lambda = \lim_{p \to \infty} \lambda_p$ exist, where it may happen that $G(z) \equiv$ $+\infty$ on D, or equivalently $\lambda = +\infty$. We call G the Green's function of Dwith pole at ζ , and λ the Robin constant for $(D, \{\zeta\})$ which corresponds to $E(\zeta, z)$. As in the theory of Riemann surfaces ([1], Chap. IV), D with $\lambda =$ $+\infty$ (resp. $< +\infty$) is said to be parabolic (resp. hyperbolic) for ds^2 .

Finally, consider the case where D is an open set of M. When we denote by D_1 the connected component of D which contains ζ , we have the Green's function G_1 of D_1 with pole at ζ , and the Robin constant λ_1 for $(D_1, \{\zeta\})$ which corresponds to $E(\zeta, z)$. By the Green's function G of D with pole at ζ we mean $G = G_1$ on D_1 and $\equiv 0$ on $D - D_1$. By the Robin constant λ for $(D, \{\zeta\})$ which corresponds to $E(\zeta, z)$ we mean $\lambda = \lambda_1$.

Remark 1. In the special case where $M = C^n$ and $ds^2 = |dz_1|^2 + \cdots + |dz_n|^2$, we have always $\lambda \leq 0$. In [6], a domain D of C^n with $\lambda = 0$ (resp. <0) was said to be parabolic (resp. hyperbolic).

2. Let M be a complex manifold with Hermitian metric ds^2 , and let B be a domain of C. Consider a domain \tilde{D} of the product space $B \times M$ and put $D(t) = \tilde{D} \cap (\{t\} \times M)$ for $t \in B$, which is called a fiber of \tilde{D} at t. As usual we can regard \tilde{D} as variation of open set D(t) of M with complex parameter $t \in B$. We write thus

$$\tilde{D}: t \longrightarrow D(t) \quad (t \in B).$$

Throughout this section we impose on \tilde{D} the following conditions: (a) There exists a point $\zeta \in M$ such that $\tilde{D} \supset B \times \{\zeta\}$; (b) The boundary of \tilde{D} in $B \times M$ is smooth; (c) Each D(t) is a relatively compact domain of M with smooth boundary $\partial D(t)$. Now, take $E(\zeta, z) \in E(\zeta, U, ds^2)$. For any fixed $t \in B$ we have the Green's function G(t, z) of D(t) with pole at ζ and the Robin constant $\lambda(t)$ for $(D(t), \{\zeta\})$ which corresponds to $E(\zeta, z)$, so that G is expressed in a neighborhood of ζ in the form

(1) $G(t,z) = E(\zeta,z) + \lambda(t) + H(t,z)$

where H(t, z) is harmonic with respect to z and $H(t, \zeta) = 0$. Consequently, $\lambda(t)$ becomes a function on B such that $-\infty < \lambda(t) < +\infty$. Since the variation $\tilde{D} \cup \partial \tilde{D} : t \rightarrow D(t) \cup \partial D(t)$ ($t \in B$) is diffeomorphically trivial, G(t, z) and $\lambda(t)$ are of class C^3 on $(\tilde{D} \cup \partial \tilde{D}) - B \times \{\zeta\}$ and on B, respectively. It follows from (1) that $\partial G/\partial t$ is of class C^2 on $\tilde{D} \cup \partial \tilde{D}$. In these circumstances we obtain the following fundamental inequality :

Theorem 2. Suppose that \tilde{D} is a pseudoconvex domain in $B \times M$. Then

$$\frac{\partial^2 \lambda(t)}{\partial t \partial \bar{t}} \leq \frac{-2}{(n-1)\omega_{2n}} \Big\{ \Big\| \bar{\partial} \frac{\partial G}{\partial t} \Big\|_{D(t)}^2 + \operatorname{Im} \iint_{D(t)} \Big(\frac{\partial G}{\partial \bar{t}} \bar{\partial} \frac{\partial G}{\partial t} \wedge \partial * \omega + \frac{1}{2} \Big| \frac{\partial G}{\partial t} \Big|^2 \bar{\partial} \partial * \omega \Big) \Big\}$$

for $t \in B$, where ω_{2n} is the surface area of the unit sphere in C^n .

3. Let us give some applications of Theorem 2. In this section except for 3°, we restrict ourselves to the same situation as in Theorem 2.

1° (Superharmonicity). Suppose that ds^2 satisfies the following condition : $\|\partial * \omega\|^2(z) \omega^n/n! \leq \text{Im } \bar{\partial} \partial * \omega$ on M, or equivalently

(2) $\sum_{\alpha,\beta=1}^{n} g^{\beta\alpha} \partial_{\beta} T_{\alpha} \leq 0$ on M,

where $T_{\alpha} = \sum_{\mu=1}^{n} T^{\mu}_{\mu\alpha}$ and $T^{\alpha}_{\mu\beta} = \Gamma^{\alpha}_{\mu\beta} - \Gamma^{\alpha}_{\beta\mu}$ (complex torsion). Then we obtain from Theorem 2

$$(3) \qquad \frac{\partial^2 \lambda(t)}{\partial t \partial \bar{t}} \leq \frac{-1}{(n-1)\omega_{2n}} \left\| \bar{\partial} \frac{\partial G}{\partial t} \right\|_{D(t)}^2 \qquad (\leq 0).$$

Corollary 1. If ds^2 satisfies (2), then $\lambda(t)$ is a superharmonic function on B.

It is clear that any Koehler metric ds^2 on M satisfies (2). A simple example of non-Koehler metric satisfying (2) is $ds^2 = ||dz||^2/(1-||z||^2)^2$ on $M = \{z \in \mathbb{C}^n \mid ||z|| \le 1\}$.

 2° (Rigidity). By the inequality (3) we have

Lemma 1. Suppose that ds^2 satisfies (2). Then, (i) if $(\partial^2 \lambda / \partial t \partial \bar{t})(t_0) = 0$ at some $t_0 \in B$, then $(\partial G / \partial t)(t_0, z) = 0$ on $D(t_0)$; (ii) if $\lambda(t)$ is harmonic on B, then D is identical with the product $B \times D(t_0)$.

3° (Homogeneous spaces). Let M be a complex homogeneous (compact or non-compact) manifold with respect to a complex Lie transformation group G. Suppose that G admits a Koehler metric ds^2 . Let D be a relatively compact pseudoconvex domain of M with non-empty smooth boundary. Construct the following subset of $G \times D$:

$$\tilde{D} = \{(g, z) \in G \times D \mid g(z) \in D\}.$$

Consequently, \tilde{D} becomes a pseudoconvex open set of $G \times D$ and $\tilde{D} \supset \{e\} \times D$, where e is the unit element of G. We set $D(z) = \tilde{D} \cap (G \times \{z\})$ for $z \in D$. We regard \tilde{D} as variation of open set D(z) of G with parameter z of D, namely, $\tilde{D}: z \rightarrow D(z)$ ($z \in D$). Choose $E(h, g) \in E(e, U, ds^2)$. For each $z \in D$, we consider the Robin constant $\lambda(z)$ for $(D(z), \{e\})$ which corresponds to E(e, g). By Lemma 1

(i) $-\lambda(z)$ is a plurisubharmonic function on D such that

 $\lim_{z\to\partial D} (-\lambda(z)) = +\infty;$

(ii) if $-\lambda(z)$ is not strictly plurisubharmonic at some $z_0 \in D$, then there exists a left invariant holomorphic vector field X on G such that $\{(\operatorname{Exp} tX)(g)(z_0) | t \in C\}$ is relatively compact in D (resp. $\partial D, M - (D \cup \partial D)$) for every $g \in G$ with $g(z_0) \in D$ (resp. $\partial D, M - (D \cup \partial D)$). Hence D never occurs to be a Stein manifold.

Remark 2. The assertion (ii) may be compared with the following theorem due to D. Michel [4]: In a compact homogeneous manifold with a complex Lie transformation group, any pseudoconvex domain which has at least one strictly pseudoconvex boundary point is a Stein manifold.

4. Let M, ds^2 and B be the same as in Section 2. Consider a domain \tilde{D} of $B \times M$. Throughout this section, we suppose that (a) there exists a point $\zeta \in M$ such that $B \times \{\zeta\} \subset \tilde{D}$; (b) ds^2 is a Koehler metric on M; (c) \tilde{D} admits a real analytic plurisubharmonic function φ on \tilde{D} such that $\tilde{D}_r = \{\varphi < r\}$ is relatively compact in \tilde{D} for any real r. Fix once and for all $E(\zeta, z) \in E(\zeta, U, ds^2)$ with ζ being the point mentioned in (a). For $t \in B$ we have the Robin constant $\lambda(t)$ for $(D(t), \{\zeta\})$ which corresponds to $E(\zeta, z)$. Thus $\lambda(t)$ is a function on B such that $-\infty < \lambda(t) \leq +\infty$. Let B_0 be a relatively compact subdomain of B. Then there exists a real r_0 such that $\tilde{D}_r \supset B_0 \times \{\zeta\}$ for all $r > r_0$. For each $t \in B_0$, we denote by $D_r(t)$ the fiber of \tilde{D}_r at t, and have the Robin constant $\lambda_r(t)$ for $(D_r(t), \{\zeta\})$ which corresponds to $E(\zeta, z)$. In general, $\tilde{D}_r: t \rightarrow D_r(t)$ ($t \in B_0$) is no longer diffeomorphically trivial, and hence $\lambda_r(t)$ is not always of class C^2 on B_0 . However we shall find the following differentiability which is all we need :

Lemma 2. For almost all $r (>r_0)$, $\lambda_r(t)$ is of class C^1 on B_0 .

This and Corollary 1 imply that for any such r, $\lambda_r(t)$ becomes superharmonic on B_0 . Since $\lambda_r(t) \rightarrow \lambda(t)$ $(r \rightarrow +\infty)$ increasingly at $t \in B$, we have proved

Theorem 3. The function $\lambda(t)$ is superharmonic on B.

This yields the following fiber's uniformity:

Corollary 2. Consider the subset $K = \{t \in B | D(t) \text{ has at least one} parabolic connected component for <math>ds^2\}$. If K is of positive logarithmic capacity in C, then K = B and each connected component of D(t) for every $t \in B$ is parabolic for ds^2 .

References

- L. V. Ahlfors and L. Sario: Riemann Surfaces. Princeton Univ. Press, N. J. (1960).
- [2] K. Kodaira: Harmonic fields in Riemannian manifolds (generalized potential theory). Ann. of Math., 50, 589-665 (1949).
- [3] J. Morrow and K. Kodaira: Complex Manifolds. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London (1971).
- [4] D. Michel: Sur les ouverts pseudo-convexes des espaces homogènes. C. R. Acad. Sci. Paris, Sér. A, Math., 283, 779-782 (1976).
- [5] H. Yamaguchi: Parabolicité d'une fonction entière. J. Math. Kyoto Univ., 16, 71-92 (1976).
- [6] ——: Variations of pseudoconvex domains. Proc. Japan Acad., 59A, 289–292 (1983).