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1. Introduction. We investigate the globally asymptotic stability of
the zero solution of the ordinary differential equation
( 1 ) =x(t, x) (x(t, o) =o),
where X’R+R--.R is a continuous function and R

In the autonomous case, that is, X(t, x)----X(x) in (1), Barbashin and
Krasovski established conditions for uniformly asymptotic stability of the
zero solution of (1) (see [4]). Some generalizations of their result to the
nonautonomous differential equation (1) were given by Matrosov [3],
Hatvani [1], [2], and [4], etc.

In this paper we extend Hatvani’s results [2] and obtain the sufficient
conditions for the globally asymptotic stability, globally equi-asymptotic
stability, and globally uniformly asymptotic stability as well as uniform
stability of the zero solution of (1).

2. Theorems. For x R and >0, let Bn(x,D={y
The -neighborhood of a set EcR is the set B(E, )= {x e R d(x, E) <,),
where d(x, E)--inf {I]x--Yll" Y e E} is the distance from x e R to E.

A function a is said to belong to class K (a e K) if a is a continuous,
strictly increasing function on R into R with a(0)=0.

A measurable function ’R+--R is said to be ingegrally positive (see
[1], [2], [3]) if

(t)dt= + oo
I

on every set I=3 [,/] such that /+x,/-c>__/a0 or i=1,2,
I, in addition, c+-/<=2 (i--1,2, ...) for some constant 20, is

said to be weakly integrally positive.
Let a continuous function Q’R+ Rn-->R satisfy a locally Lipschitz

condition in x. The derivative of Q with respect to the equation (1) is the
function defined by

Q(t, x)-lim sup 1[Q(t+ h, x+ hX(t, x))-Q(t, X)]
k-0+

((t, x)
For p e R, [p]+ max {p, 0} is said to be the positive part of p.,
Let x(. ;to, x0) be a solution of (1) passing through a point (to, x0) in

R R.
Theorem 1. Suppose that there exist an absolutely continuous rune-
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tion A" R+Rn-->R and continuous /unctions V" R+Rn-+R, W" R-R,
which are locally Lipschitzian in x, such that/or some a, b K, the follow-
ing conditions hold.

( I ) a(J]x]l)gV(t,x)<=b(]lx]]) in R+XRn, a(r)--+oo (r-+oo).
Let H be any positive constant.
(II) There exist a integrally positive function " R+oR and a con-

tinuous function U’Bn(O, H)R+ such that
?,)(t, x)g -(t)U(x) in R B(O, H).

(III) Let F=U-(O). For every compact set McB(O,H)F, there
exists a constant p=p(M)>O such that B(M,p)F=, where B(M,p)
W-[B(W(M), p)] B(0, H).
(IV) For every continuous function u’R+ )B(M,p),

I0 ()(u(s))ds
is uniformly continuous in R+.

(V) For any toeR andany a,a(O<a<a<H), there existpositive
constants fl, c and a continuous function

+" R+- >R +(t)dt= +
sueh that ]or every continuous ]unction v’R

A(t, v(t))ge and A()(t, v(t))+(t) in [t0, +),
where J(a, a)= {x B(F, )

Then the zero solution o] (1) is uni]ormly stable and globally attractive,
there]ore it is globally asymptotically stable.

Theorem 2. If, in addition to the assumptions in Theorem 1, every
soMtion of (1) starting ]rom point in R+X B(O, H) is unique to the right,
then the zero solution of (1) is uni]ormly stable and globally equi-asymp-
totically stable, therefore it is globally equi-asymptotically stable.

Corollary 1. Suppose that the ]unction in (II) satisfies

instead o/ the integrally positive property. Furthermore, let (IV) be
replaced by the [ollowing.

(IV’) For every continuous [unction u’R+B(M, p),

12 W()(u(s)) ds < +
Then the statements of Theorems 1 and 2 remain true.
Corollary 2. Suppose that the function in (II) is only weakly

integrally positive and (V) is replaced by the following.
(V’) For any constants a and a (Oa<a2H), there exist positive

constants fl, c2 and c such that
[A(t,x)lgc and A()(t,x)c in R+J(a,a).

Then the statements of Theorems i and 2 remain true.
Theorem 3. Suppose that all the assumptions in Theorem 1 except

for (II) and (V) hold. Let (II) be replaced by the following.
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(II’) There exist a positive constant c and a continuous function
U" B(O, H)-R such that

ff()(t, x) .-cU(x) in R Bn(O, H).
If, in addition, (V’) is satisfied, then the zero solution of (1) is globally uni-
formly asymptotically stable.

Corollary . In the above theorems and corollaries, let W()(u(s)) in
assumptions (IV)and (IV’) be replaced by the function [W()(u(s))]+, then
the statements of Theorems 1-3 and Corollaries 1-2 remain true.. Proofs. To prove Theorems and Corollaries, we need the follow-
ing lemmas obtained by Hatvani [1].

Lemma 1. Let H be some positive constant. Suppose that there exist
continuous functions V" R B(O, H)oR and W" B(O, H)R, which are
locally Lipschitzian in x. Let F be a subset of B(O,H) and OH’H.
For any r e B(O,H)F, there exist p=p(r)O and T=T(r) e R such that
for any continuous function u" [T, + )oB(r, p) B(O, H), (B(r, p)=
W-[B(W(r), p)]), the following conditions hold.

(i) _{ W()(u(s))ds is uni/ormly continuous in [T, +).

(ii) ff()(t, u(t)) is integrally negative in [T, + ).
(iii) V(t, u(t)) is bounded/tom below in [T, + ).
Then for a solution x(.) o/ (1) such that x(t) B(O,H’) in the right

maximal interval [t0,) (cR+) where x(.) is defined, the positive limit set
9 of x(.) is included in the set F (i.e.

Lemma 2. Suppose that conditions (i) and (ii) in Lemma I are replaced
by the [ollowing (i’) and (ii’), respectively.

(ii’) .[ ()(t, u(t))dt= -- and ,)(t, u(t)) gO in [T,

Then the statement of Lemma 1 remains true.

Proof of Theorem 1. Conditions (I) and (II) imply that the zero solu-
tion of (1) is uniformly stable and all solutions of (1) are uniformly bounded.
Therefore, or any x0 e R, there exists H’0 such that for every
and every solution x(. t0, x0),
(2) [[x(t;to, Xo)l<H’ for t e [t0, +).
From the uniform stability, for any 0, there exists =(e)0 such that
for every t e R+, x e B(0, ), and any solution x(. t, x) of (1),
< for t t.

Let a=$ and a=H’. ChoCse H>0 such that H’<H. Now all the
assumptions in Lemma 1 are satisfied. Hence the positive limit set 9 of
x(. t0, x0) belongs to F. Thus there exists t0 such that
( 3 ) x(t to, Xo) e B(F, fl) for t e [r, + ).

Now we show that there exists T= T (to, e, x0, x(. t0, x0)) >0 such that
llX(to+T; to, x0)ll<. If it is not true, then by (2),
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( 4 ) 3llx(t; to, Xo)l]<H’ in [to, +c).
(3) nd (4) imply that x(t to, xo) e J(a,, ) for t e [r, + c). Hence by (V),
for any t >= r,

( 5 ) c>=A(t, x(t))=A(r, x(r)) +.[ Ao)(s, x(s))ds

where x(.)=x(. to, x0). This contradicts the fact that

I; (s)ds= + c.

Thus, x(t to, Xo) I 2or t_>__ t0+ T. Therefore the origin is globally
asymptotically stable. Q.E.D.

Proof of Theorem 2. From Theorem 1, the zero solution is globally
asymptotically stable. Thus, by the uniqueness assumption, for any t0>__0,
]0, >0, and every x0 e B(0, ), there exists T--T(to,],,Xo,)O such that
IIX(to+T;to, x0)ll3=5(e), where 5 is defined in the proof of Theorem 1. It
also follows from the uniqueness assumption that the solution x(. ;to, x0) is
continuous in x0. From this and the fact that Bn(O, ) is compact, T can be
chosen as the one independent of x0. Therefore the zero solution is globally
equi-asymptotically stable. Q.E.D.

If Lemma 2 instead of Lemma 1 is used in the proofs of Theorems 1
and 2, then we can prove Corollary 1.

To prove Corollary 2 and Theorem 3, we use the compact set M=
{x e R llx[iH’, x B(F, fl)), where , H’ are defined in the proof of
Theorem 1 and is given in (V’) for a=3 and a= H’.

The detailed proof will be published later.
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