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In this paper we establish a rigorous derivation of the two dimensional
vorticity equation associated with the Navier-Stokes equation from a many
particle system as a propagation of chaos.

It is well known that an incompressible and viscous two dimensional
fluid, under the action of an external conservative field is described by the
following evolution equations

(1) Vo, 2)+@- Vv, 2)—vdo(t, 2)=0,
(2) {v(t, z)=curlu(t, 2)=V u,—V u,,
V.-u=0, z2=(x, ¥y eR"

where u=(u,, u,) € R*is the velocity field and V,=d/dx,V ,=d/oy, V=F , V).
v>0 denotes the viscosity constant. Introducing the operatorVFi=¥,, —V.),
by virtue of /-u=0, one obtains

(3) u(t, 2)= j PO, 2)d,

where G(z)=—(2n) "'log|z| is the fundamental solution of the Poisson
equation. By means of (8), (1) turns to be a closed equation and is nothing
but a McKean’s type non-linear equation (see H. P. McKean [1]). Hence
a probabilistic treatment for the equation (1) is possible. Such an obser-
vation for the two dimensional Navier-Stokes equation was made by
Marchioro-Pulvirenti in [2]. We shall discuss “a propagation of chaos for
the equation (1)”.

Let {Z,} denote the McKean process associated with (1);
(4) dZ,=edB,+EIVG)Z.,—Z)|Z.,], o=+2x
where B, is a 2-dimensional Brownian motion and Z’ is an independent
copy of Z..

The n particle system associated with (1) are described by the follow-
ing S.D.E.g,

(5) AZi=0dBi+(n—1)" 3 TG(Zi—Z)dt,  1<i=n,

e

j=1
where (BY, - .., B") is a 2n-dimensional Brownian motion. Since the coef-
ficients of (4) have singularities at 1=, {#=Q®,, - -+, 2,) € R", 2,2}, it
is not trivial to see that the solution of (4) defines a conservative diffusion
process on R*". However, if it starts out side of Jl, it can be shown that
this diffusion process does not hit 7 (see Osada [4]).
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Let us introduce a
Definition. If E is a separakle metric space, a sequence of symmetric
probabilities m, on E is said to be m-chaotic for a probability m on E, if
for f,, - - -, fi, continuous bounded functions on E,
k
lim <mm f1® te ®flc®1® e ®1> = il:ll <m’ fi>’

n—>co

holds. In the following M(E) will denote the set of probabilities on E.
One can show (see Tanaka [6], Sznitman [5]) that being m-chaotic is equi-
valent to the convergence in law of X,=n""'> 7,04, (Which is an M(E)-
valued random variable defined on (E", m,), X, are the canonical coordinates
on E"), towards the non-random m.

In the following, C will denote C([0, )—R?. Let{Z"=(Z}, ---, Z")}
(resp. {Z}) be the solution of (5) ((4)) with initial distribution +,(z, - - -, 2,)
dz,- - -dz, (y(2)dz) and P,(P) be the probability measure on C"(C) induced
by {Z"} {Z})). Now we state our main result :

Theorem. Assume ,dz,- - -dz, is ydz-chaotic and
(6) lim sup Lm a2 dz, <o (i=1,2,4).

n—oo k2N L (R2%)
Then there exists a positive constant v, such that, if v>v,, then P, is P-
chaotic.

It is convenient to state the theorem in another way. Let Z,
Cr 30,020, - Z9) (I,={(,, - -, 1); 1<, <n, 4,1, if k=+j}) and P,=
Z,oP,e M(M(C%). C, denotes the normalized constant. Put P=d ¢
MM (C*). Then, as we explained above, Theorem is equivalent to

Theorem’. Assume {4, dz,---dz,} and + satisfy the same conditions
of Theorem. Then lim,_. P,=P in M(M(C®).

Now we proceed to a sketch of the proof.

1. Let us first show the tightness of {P,}. Letec;,(s, ) (4, j=1, ---,n)
be bounded measurable functions. A differential operator

A= ozA-}—i‘jZ__,;l Wie,)V,
on R* (« is a constant, V/,=4d/dx,) is said to be of class G(n, o, p) if

(7) j 3 e fdw=0,  for any f(@) e CYR"),

T2
(8) ley| < B/n.
We call A is of class G(n, o, f) if A € G(n, , ) and the coefficients are
smooth.

Lemma 1. Let AeGyn,a, p). Then the fundamental solution p=
p(s, z, t, y) of V,+ A satisfies

(9) ;Imlxi—yil"p(& x, t, Ydy<Cm|t—s|*
for 0<s<t<oo, any x € R* with a positive constant C, depending only on
o, Band q.

(See Osada [3] for the proof.) Let L, be the generator of (5). Then
(10) L, e G(2n, v, 2).

Il
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(See Osada [4] for the proof.) By (9) and (10), we have
an 3 B, (Zi—ZH<Cint—sf

where C, is independent of the dimension n. Taking into account of
symmetry of (ZY, - - -, Z"), we can conclude from (11) that {P,} is tight.

2. Next we state the uniqueness result for weak solutions of (1). A
family of probability measures {v,(dz)} (0<t<oo) on R* is called a weak
solution of (1) with initial condition v, if

12) j : L“ 21— 2| 0,(d2)v,(d2)ds < oo,
1s) (g F(s, Dlizi— j (0, T AD G, s

_I: Lu TG (2,—2,) -V )(s, 2)v,(dz)v (d2)ds=0

for all f(¢, 2) € C¥([0, o0) X R?.
Proposition 1. Suppose {v,(d2)} is a weak solution of (1) with initial

condition v,(dz)=v(2)dz and that v(2) € L*(R") and that v,(dz) has a density
v(t, 2) for a.e. t such that

14) j: (L (s, z)%lz) <jR (s, 2)f dz>d3<oo.

Then {v,(dz)} is unique.

3. Let Pbe an arbitrary limit point of {P,}. It can be easily seen
that P({m e M(C®); 3m € M(C), m=mQ- - -@m})=1.

Proposition 2. For P a.e. m e M(C%, e M(C) is a weak solution of
@).

To show Proposition 2, we consider a function H* on M((?,

#m=(m, [3 ¢, 2016, 20~ [ O+ 7, 20

t
—j h* O, 21, Zz)du]>

where for f e C([0, o0) X R?), h* (resp. k) is a upper (lower) semicontinuous
version of
Tr@(2,—2) -{T ), 2)— T ), 22)}-

It should be noted that H* (resp. H-) is a bounded upper (lower) semi-
continuous function on M(C*). Hence we have

Lemma 2. For Pa.e. me M,
(15) H*(m)=0 and H- (m)Z0.

By using Ito’s formula for r(z)=|z|, we have

Lemma 3. There exists a positive constant v, such that, if v=yv,, then

16) sup B, ([ 121- 221 ds) <oo.
By (16) we have, fo:' Pa.e. 71&,

an (m, j:|Z§—Z§|“ds <oo

and

a18) H*(m)=H (m)=0.
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On account of the symmetry of Z* and Z2, (13) follows from (17) and (18),
which completes the proof of Proposition 2.

4. The final step is

Proposition 3. There exists a positive constant v, such that if v=y,,
then, for P a.e. m € M(C%, 7 has o density m,(2)dz for a.e. t>0 satisfying
14).

Let g,(2)=2rh)"* exp (—|2[*/ 1), 2=(2,, 25 2;) € R°. It is not difficult to
see that Proposition 3 follows from

Lemma 4.
(19) sup E; (<m j‘ 9.2 — 28, B3—74, 70— Zg)ds>) < oo

0

h>0

We can reduce (19) to
(20) Tim sup B, (< f ‘9 (Zi—22, T, T Z§)ds> < oo.
0

n k>0

The key point of the proof of (20) is to show
Lemma 5.

@) Tm By ([ 42— 23 +12i— B+ 2~ 222 2 22 ds) <o
n 0

(=12 4).
The details of the proof will be given elsewhere.
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