19. On the Construction of Pure Number Fields of Odd Degrees with Large 2-class Groups*)

By Shin Nakano
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1986)

Introduction. In his previous paper [3], the author constructed infinitely many pure number fields of any given odd degree $n(>1)$ whose ideal class groups have 2 -rank at least $2 \Delta_{n}$, where Δ_{n} is the number of divisors of n which are smaller than n, that is $\Delta_{n}=\prod_{i=1}^{r}\left(e_{i}+1\right)-1$ if $n=\prod_{i=1}^{r} p_{i}^{e_{i}}$ is the decomposition of n into prime factors. The aim of the present paper is to give a stronger result. We shall namely show the following

Theorem. For any odd natural number n greater than 1, there exist infinitely many pure number fields of degree n whose ideal class groups have 2-rank at least $3 \Delta_{n}$.

In order to prove this, we make use of the symmetric polynomial in X, Y, Z;

$$
\begin{aligned}
& D(X, Y, Z)=\frac{X^{2}+Y^{2}+Z^{2}}{4}-\frac{X Y+Y Z+Z X}{2} \\
& \quad=\left(\frac{-X+Y+Z}{2}\right)^{2}-Y Z=\left(\frac{X-Y+Z}{2}\right)^{2}-Z X \\
& \quad=\left(\frac{X+Y-Z}{2}\right)^{2}-X Y .
\end{aligned}
$$

Putting $(X, Y, Z)=\left(x^{n}, y^{n}, z^{n}\right)$ and A_{i}, C_{i} as in the table below, we obtain the polynomial $D\left(x^{n}, y^{n}, z^{n}\right)=C_{1}^{2}-A_{1}^{n}=C_{2}^{2}-A_{2}^{n}=C_{3}^{2}-A_{3}^{n}$.

i	A_{i}	$2 C_{i}$
1	$y z$	$-x^{n}+y^{n}+z^{n}$
2	$z x$	$x^{n}-y^{n}+z^{n}$
3	$x y$	$x^{n}+y^{n}-z^{n}$

This polynomial, which will play an important part in our proof, is also applied to the research on " n-rank" of the ideal class groups of quadratic fields (Yamamoto [4], Craig [1], [2]). In that case, all the three above expressions of $D\left(x^{n}, y^{n}, z^{n}\right)$ cannot be used effectively (see [1] pp. 451). However, in the proof of our theorem, we take full advantage of them.

In case $n=3$ i.e. pure cubic case, corresponding to Craig's precise result [2] on 3-rank of the ideal class groups of quadratic fields, we can prove a 2 -rank theorem giving a better estimation than above, which will appear elsewhere.

[^0]1. Let n be a fixed odd natural number greater than $1, S$ be the set of all divisors of n smaller than $n . \quad \Delta_{n}$ is the cardinal of S.

For rational integers x, y, z, let A_{i}, C_{i} be as above,

$$
D=D\left(x^{n}, y^{n}, z^{n}\right), \quad \theta=\sqrt[n]{D, \quad K=\boldsymbol{Q}(\theta)}
$$

and

$$
L=K\left(\sqrt{\theta^{d}+A_{i}^{d}} \mid d \in S, 1 \leqq i \leqq 3\right) .
$$

Then we have
Lemma 1. Let x, y, z be rational integers satisfying the following conditions:
(1) $\quad\left(x^{n}-y^{n}, z\right)=\left(y^{n}-z^{n}, x\right)=\left(z^{n}-x^{n}, y\right)=1$.
(2) $\quad\left(-x^{n}+y^{n}+z^{n}, n\right)=\left(x^{n}-y^{n}+z^{n}, n\right)=\left(x^{n}+y^{n}-z^{n}, n\right)=1$.
(3) Two of x, y, z are multiples of 4 and the other is odd.

Then L / K is an extension unramified at all primes of K.
Proof. Consider $d \in S$ and $i(1 \leqq i \leqq 3)$ as fixed. It suffices to show that the quadratic extension $K\left(\sqrt{\theta^{d}+A_{i}^{d}}\right) / K$ is unramified at all primes of K. First, since $\theta^{n}+A_{i}^{n}=C_{i}^{2}>0$ and consequently $\theta^{d}+A_{i}^{d}$ is totally pcsitive, any infinite prime of K is unramified. Next, it follows from (1) and (2) that $n A_{i}$ and C_{i} are relatively prime in the ring $Z\left[2^{-1}\right]$. Therefore, in the same manner as in the proof of Proposition in [3], we have $\operatorname{ord}_{\mathfrak{p}}\left(\theta^{d}+A_{i}^{d}\right) \equiv 0$ $(\bmod 2)$ for any prime ideal \mathfrak{p} of K prime to 2 . This implies that all such prime ideals are unramified for $K\left(\sqrt{ } \bar{\theta}^{d}+A_{i}^{d}\right)$. Lasily, we consider the prime ideal of K lying above 2. From (3), it is easy to see that $A_{i} \equiv 0$ and $4 D \equiv 1$ $(\bmod 4)$, thus $\operatorname{ord}_{2}(D)=-2$. As n is odd, there is the unique prime ideal \mathfrak{l} of K lying above 2. Put $\rho=2 \theta^{(n-1) / 2}$. Since $\operatorname{ord}_{t}(\theta)=-2$, we have $\operatorname{ord}_{\mathfrak{t}}(\rho)$ $=1$ and $\rho^{2 d}\left(\theta^{d}+A_{i}^{d}\right)=\left(4 \theta^{n}\right)^{d}+\rho^{2 d} A_{i}^{d} \equiv(4 D)^{d} \equiv 1(\bmod 4)$. Hence \mathfrak{l} is unramified for $\left.K\left(\sqrt{\rho^{2 d}\left(\theta^{d}+A_{i}^{d}\right.}\right)\right)=K\left(\sqrt{\theta^{d}+A_{i}^{d}}\right)$.
2. Next, we are concerned with sufficient conditions for x, y, z to the effect that L / K will be an abelian extension with Galois group isomorphic to $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{3 A_{n}}$.

We fix π such that $\pi^{n}=2$, and put $F=\boldsymbol{Q}(\pi)$. As shown in [3], there exist prime ideals $\mathfrak{p}_{d}^{(i)}(d \in S, 1 \leqq i \leqq 3)$ of F of degree 1 satisfying

$$
\begin{equation*}
\left(\frac{2}{\mathfrak{p}_{d}^{(i)}}\right)=+1, \quad\left(\frac{\pi^{e}-1}{\mathfrak{p}_{d}^{(i)}}\right)=(-1)^{\delta_{d e}} \quad(d, e \in S, 1 \leqq i \leqq 3), \tag{4}
\end{equation*}
$$

where (-) denotes the quadratic residue symbol and $\delta_{d e}$ the Kronecker delta. Furthermore, putting $p_{d}^{(i)}=\mathfrak{p}_{d}^{(i)} \cap Z$, we may take $\mathfrak{p}_{d}^{(i)}$ so that there is a rational integer c satisfying

$$
\begin{equation*}
c^{2 n}+2 c^{n}-1 \equiv 0 \quad\left(\bmod p_{d}^{(i)}\right) \quad(d \in S, 1 \leqq i \leqq 3), \tag{5}
\end{equation*}
$$

and that $p_{d}^{(i)}(d \in S, 1 \leqq i \leqq 3)$ are pairwise distinct and prime to $2 n$. We fix such $\mathfrak{p}_{d}^{(i)}$ and c.

Lemma 2. Let x, y, z be rational integers satisfying, for all $d \in S$,

$$
\left\{\begin{array}{lll}
x \equiv 0, & y \equiv-c, \quad z \equiv c^{-1} & \left(\bmod p_{d}^{(1)}\right), \tag{6}\\
x \equiv c^{-1}, & y \equiv 0, & z \equiv-c \\
x \equiv-c, \quad y \equiv c^{-1}, & z \equiv 0 & \left(\bmod p_{d}^{(2)}\right), \\
x \equiv-2)
\end{array}\right.
$$

Then the $3 \Delta_{n}$ elements $\theta^{d}+A_{i}^{d}(d \in S, 1 \leqq i \leqq 3)$ are independent in $K^{\times} / K^{\times 2}$, if $[K: Q]=n$.

Proof. Assume that $[K: Q]=n$, so that $f(X)=X^{n}-D$ is irreducible. Take a rational integer u congruent to π modulo $\mathfrak{p}_{d}^{(i)}$ for all $d \in S$ and $i(1 \leqq i$ $\leqq 3)$. By the congruences (5) and (6), we have $D \equiv 2\left(\bmod p_{d}^{(i)}\right)$, consequently $f(u) \equiv 0\left(\bmod p_{d}^{(i)}\right)$. As $f^{\prime}(u)=n u^{n-1} \not \equiv 0\left(\bmod p_{d}^{(i)}\right), \mathfrak{P}_{d}^{(i)}=\left(\theta-u, p_{d}^{(i)}\right)$ is a prime ideal of K of degree 1 and thus there are the canonical isomorphisms

$$
\mathfrak{O}_{K} / \mathfrak{P}_{d}^{(i)} \simeq \boldsymbol{Z} / p_{d}^{(i)} \boldsymbol{Z} \simeq \mathfrak{〇}_{F} / \mathfrak{p}_{d}^{(i)} \quad(d \in S, 1 \leqq i \leqq 3)
$$

where \mathfrak{D}_{K} (resp. \mathfrak{O}_{F}) is the ring of integers of K (resp. F). Therefore, by (4) and (6), we have for $d, e \in S$ and $i, j(1 \leqq i, j \leqq 3)$

$$
\begin{aligned}
& \left(\frac{\theta^{e}+A_{i}^{e}}{\mathfrak{P}_{d}^{(i)}}\right)=\binom{u^{e}-1}{p_{d}^{(i)}}=\left(\frac{\pi^{e}-1}{\mathfrak{p}_{d}^{(i)}}\right)=(-1)^{\delta_{d e}}, \\
& \left(\frac{\theta^{e}+A_{j}^{e}}{\mathfrak{P}_{d}^{(i)}}\right)=\binom{u^{e}}{p_{d}^{(i)}}=\left(\frac{2}{p_{d}^{(i)}}\right)=+1 \quad(i \neq j),
\end{aligned}
$$

that is,

$$
\binom{\theta^{e}+A_{j}^{e}}{\mathfrak{B}_{d}^{(i)}}= \begin{cases}-1, & \text { if } d=e \text { and } \quad i=j, \\ +1, & \text { otherwise. }\end{cases}
$$

Now, suppose

$$
\prod_{e \in S} \prod_{j=1}^{3}\left(\theta^{e}+A_{j}^{e}\right)^{a_{e}^{(j)}} \in K^{\times 2}
$$

for some $a_{e}^{(j)}=0$ or 1 . Considering this relation modulo $\mathfrak{P}_{d}^{(i)}$, we have $a_{d}^{(i)}$ $=0$. This proves our assertion.
3. We now prove the theorem. Since there are infinitely many prime numbers q such that 2 is an n-th power residue modulo q, it is sufficient to construct, for any given such q, at least one pure number field K of degree n so that K has an unramified abelian extension with Galois group isomorphic to $(Z / 2 Z)^{3 A_{n}}$, and q is ramified for K. Let q be such a prime number. We may safely assume that q is prime to $2 n \prod_{d, i} p_{d}^{(i)}$. Take rational integers x, y, z satisfying (6) and
in the following procedure. First, choose x and y in the form

$$
\begin{equation*}
x=4 \xi \prod_{d \in S} p_{d}^{(1)}, \quad y=4 \eta \prod_{d \in S} p_{d}^{(2)} \quad \text { where }(\xi, \eta)=\left(\xi \eta, 2 n q \prod_{d, i} p_{d}^{(i)}\right)=1 \tag{8}
\end{equation*}
$$

Next, choose z satisfying the additional congruences

$$
\begin{equation*}
z \equiv-y(\bmod \xi), \quad z \equiv-x(\bmod \eta) \tag{9}
\end{equation*}
$$

in the form

$$
\begin{equation*}
z=\zeta \prod_{d \in S} p_{d}^{(3)} \quad \text { where }\left(\zeta, x^{n}-y^{n}\right)=1 \tag{10}
\end{equation*}
$$

Referring to the choice of $p_{d}^{(i)}, q$ and the congruences (6), (7), we see easily that such x, y, z or ξ, η, ζ exist. Then, by a simple calculation using (5)(10), we can show that x, y, z satisfy (1)-(3) and also $q \| D$. Hence, from Lemmas 1 and 2, our assertion is proved.

References

[1] M. Craig: A type of class group for imaginary quadratic fields. Acta Arith., 22, 449-459 (1973).
[2] --: A construction for irregular discriminants. Osaka J. Math., 14, 365-402 (1977).
[3] S. Nakano: On the 2-rank of the ideal class groups of pure number fields. Arch. Math., 42, 53-57 (1984).
[4] Y. Yamamoto: On unramified Galois extensions of quadratic number fields. Osaka J. Math., 7, 57-76 (1970).

[^0]: *) Partially supported by the Fûjukai Foundation.

