19. On the Construction of Pure Number Fields of Odd Degrees with Large 2-class Groups^{*)}

By Shin NAKANO

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1986)

Introduction. In his previous paper [3], the author constructed infinitely many pure number fields of any given odd degree n(>1) whose ideal class groups have 2-rank at least $2\Delta_n$, where Δ_n is the number of divisors of *n* which are smaller than *n*, that is $\Delta_n = \prod_{i=1}^r (e_i+1)-1$ if $n = \prod_{i=1}^r p_i^{e_i}$ is the decomposition of *n* into prime factors. The aim of the present paper is to give a stronger result. We shall namely show the following

Theorem. For any odd natural number n greater than 1, there exist infinitely many pure number fields of degree n whose ideal class groups have 2-rank at least $3\Delta_n$.

In order to prove this, we make use of the symmetric polynomial in X, Y, Z;

$$D(X, Y, Z) = \frac{X^2 + Y^2 + Z^2}{4} - \frac{XY + YZ + ZX}{2}$$
$$= \left(\frac{-X + Y + Z}{2}\right)^2 - YZ = \left(\frac{X - Y + Z}{2}\right)^2 - ZX$$
$$= \left(\frac{X + Y - Z}{2}\right)^2 - XY.$$

Putting $(X, Y, Z) = (x^n, y^n, z^n)$ and A_i , C_i as in the table below, we obtain the polynomial $D(x^n, y^n, z^n) = C_1^2 - A_1^n = C_2^2 - A_2^n = C_3^2 - A_3^n$.

i	A_i	$2C_i$
1	yz	$-x^n+y^n+z^n$
2	zx	$x^n - y^n + z^n$
3	xy	$x^n + y^n - z^n$

This polynomial, which will play an important part in our proof, is also applied to the research on "*n*-rank" of the ideal class groups of quadratic fields (Yamamoto [4], Craig [1], [2]). In that case, all the three above expressions of $D(x^n, y^n, z^n)$ cannot be used effectively (see [1] pp. 451). However, in the proof of our theorem, we take full advantage of them.

In case n=3 i.e. pure cubic case, corresponding to Craig's precise result [2] on 3-rank of the ideal class groups of quadratic fields, we can prove a 2-rank theorem giving a better estimation than above, which will appear elsewhere.

^{*)} Partially supported by the Fûjukai Foundation.

1. Let n be a fixed odd natural number greater than 1, S be the set of all divisors of n smaller than n. Δ_n is the cardinal of S.

For rational integers x, y, z, let A_i, C_i be as above,

$$D=D(x^n, y^n, z^n), \quad \theta=\sqrt[n]{D}, \quad K=Q(\theta)$$

and

$$L = K(\sqrt{\theta^{d} + A_{i}^{d}} \mid d \in S, 1 \leq i \leq 3).$$

Then we have

Lemma 1. Let x, y, z be rational integers satisfying the following conditions:

(1) $(x^n - y^n, z) = (y^n - z^n, x) = (z^n - x^n, y) = 1.$

(2) $(-x^n+y^n+z^n, n)=(x^n-y^n+z^n, n)=(x^n+y^n-z^n, n)=1.$

(3) Two of x, y, z are multiples of 4 and the other is odd.

Then L/K is an extension unramified at all primes of K.

Proof. Consider $d \in S$ and i $(1 \leq i \leq 3)$ as fixed. It suffices to show that the quadratic extension $K(\sqrt{\theta^{d} + A_{i}^{d}})/K$ is unramified at all primes of K. First, since $\theta^{n} + A_{i}^{n} = C_{i}^{2} > 0$ and consequently $\theta^{d} + A_{i}^{d}$ is totally positive, any infinite prime of K is unramified. Next, it follows from (1) and (2) that nA_{i} and C_{i} are relatively prime in the ring $Z[2^{-1}]$. Therefore, in the same manner as in the proof of Proposition in [3], we have $\operatorname{ord}_{\mathfrak{p}}(\theta^{d} + A_{i}^{d}) \equiv 0$ (mod 2) for any prime ideal \mathfrak{p} of K prime to 2. This implies that all such prime ideals are unramified for $K(\sqrt{\theta^{d}} + A_{i}^{d})$. Lastly, we consider the prime ideal of K lying above 2. From (3), it is easy to see that $A_{i} \equiv 0$ and $4D \equiv 1$ (mod 4), thus $\operatorname{ord}_{2}(D) = -2$. As n is odd, there is the unique prime ideal \mathfrak{l} of K lying above 2. Put $\rho = 2\theta^{(n-1)/2}$. Since $\operatorname{ord}_{\mathfrak{l}}(\theta) = -2$, we have $\operatorname{ord}_{\mathfrak{l}}(\rho)$ =1 and $\rho^{2d}(\theta^{d} + A_{i}^{d}) = (4\theta^{n})^{d} + \rho^{2d}A_{i}^{d} \equiv (4D)^{d} \equiv 1 \pmod{4}$. Hence \mathfrak{l} is unramified for $K(\sqrt{\rho^{2d}(\theta^{d} + A_{i}^{d})) = K(\sqrt{\theta^{d} + A_{i}^{d}})$.

2. Next, we are concerned with sufficient conditions for x, y, z to the effect that L/K will be an abelian extension with Galois group isomorphic to $(Z/2Z)^{3d_n}$.

We fix π such that $\pi^n = 2$, and put $F = Q(\pi)$. As shown in [3], there exist prime ideals $\mathfrak{p}_d^{(i)}$ $(d \in S, 1 \leq i \leq 3)$ of F of degree 1 satisfying

$$(4) \qquad \left(\frac{2}{\mathfrak{p}_d^{(i)}}\right) = +1, \quad \left(\frac{\pi^e - 1}{\mathfrak{p}_d^{(i)}}\right) = (-1)^{\delta_{de}} \quad (d, e \in S, 1 \leq i \leq 3),$$

where (-) denotes the quadratic residue symbol and δ_{de} the Kronecker delta. Furthermore, putting $p_a^{(i)} = \mathfrak{p}_a^{(i)} \cap Z$, we may take $\mathfrak{p}_a^{(i)}$ so that there is a rational integer c satisfying

(5) $c^{2n}+2c^n-1\equiv 0 \pmod{p_d^{(i)}}$ $(d \in S, 1\leq i\leq 3)$, and that $p_d^{(i)}$ $(d \in S, 1\leq i\leq 3)$ are pairwise distinct and prime to 2n. We fix such $\mathfrak{p}_d^{(i)}$ and c.

Lemma 2. Let x, y, z be rational integers satisfying, for all $d \in S$,

(6)
$$\begin{cases} x \equiv 0, \quad y \equiv -c, \quad z \equiv c^{-1} \pmod{p_a^{(1)}}, \\ x \equiv c^{-1}, \quad y \equiv 0, \quad z \equiv -c \pmod{p_a^{(2)}}, \\ x \equiv -c, \quad y \equiv c^{-1}, \quad z \equiv 0 \pmod{p_a^{(3)}}. \end{cases}$$

Then the $3\Delta_n$ elements $\theta^d + A_i^d$ ($d \in S$, $1 \leq i \leq 3$) are independent in $K^{\times}/K^{\times 2}$, if [K:Q] = n.

Proof. Assume that $[K: \mathbf{Q}] = n$, so that $f(X) = X^n - D$ is irreducible. Take a rational integer u congruent to π modulo $\mathfrak{p}_d^{(i)}$ for all $d \in S$ and i $(1 \leq i \leq 3)$. By the congruences (5) and (6), we have $D \equiv 2 \pmod{p_d^{(i)}}$, consequently $f(u) \equiv 0 \pmod{p_d^{(i)}}$. As $f'(u) = nu^{n-1} \not\equiv 0 \pmod{p_d^{(i)}}$, $\mathfrak{P}_d^{(i)} = (\theta - u, p_d^{(i)})$ is a prime ideal of K of degree 1 and thus there are the canonical isomorphisms

 $\mathfrak{O}_{K}/\mathfrak{P}_{d}^{(i)} \simeq \mathbb{Z}/p_{d}^{(i)}\mathbb{Z}\simeq \mathfrak{O}_{F}/\mathfrak{P}_{d}^{(i)}$ $(d \in S, 1 \leq i \leq 3),$ where \mathfrak{O}_{K} (resp. \mathfrak{O}_{F}) is the ring of integers of K (resp. F). Therefore, by (4) and (6), we have for $d, e \in S$ and i, j $(1 \leq i, j \leq 3)$

$$\begin{pmatrix} \frac{\theta^e + A_i^e}{\mathfrak{P}_d^{(i)}} \end{pmatrix} = \begin{pmatrix} \frac{u^e - 1}{p_d^{(i)}} \end{pmatrix} = \begin{pmatrix} \frac{\pi^e - 1}{\mathfrak{P}_d^{(i)}} \end{pmatrix} = (-1)^{\delta_{de}},$$

$$\begin{pmatrix} \frac{\theta^e + A_j^e}{\mathfrak{P}_d^{(i)}} \end{pmatrix} = \begin{pmatrix} \frac{u^e}{p_d^{(i)}} \end{pmatrix} = \begin{pmatrix} \frac{2}{p_d^{(i)}} \end{pmatrix} = +1 \qquad (i \neq j),$$

that is,

$$\left(\begin{array}{c} \frac{\theta^e + A_j^e}{\mathfrak{P}_d^{(i)}} \end{array}\right) = \begin{cases} -1, & ext{if } d = e \quad ext{and} \quad i = j \\ +1, & ext{otherwise.} \end{cases}$$

Now, suppose

$$\prod_{e\in S}\prod_{j=1}^{3} (\theta^e + A_j^e)^{a_e^{(j)}} \in K^{\times 2},$$

for some $a_e^{(j)} = 0$ or 1. Considering this relation modulo $\mathfrak{P}_d^{(i)}$, we have $a_d^{(i)} = 0$. This proves our assertion.

3. We now prove the theorem. Since there are infinitely many prime numbers q such that 2 is an *n*-th power residue modulo q, it is sufficient to construct, for any given such q, at least one pure number field K of degree n so that K has an unramified abelian extension with Galois group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{3d_n}$, and q is ramified for K. Let q be such a prime number. We may safely assume that q is prime to $2n \prod_{d,i} p_d^{(i)}$. Take rational integers x, y, z satisfying (6) and

(7)
$$\begin{cases} x \equiv 1, \quad y \equiv 1, \quad z^n \equiv 4+q \pmod{q^2}, \\ x \equiv 0, \quad y \equiv 0, \quad z \equiv 1 \pmod{4}, \\ x \equiv 1, \quad y \equiv 1, \quad z \equiv 1 \pmod{n}, \end{cases}$$

in the following procedure. First, choose x and y in the form

(8) $x = 4\xi \prod_{d \in S} p_d^{(1)}, \quad y = 4\eta \prod_{d \in S} p_d^{(2)} \quad \text{where} \ (\xi, \eta) = (\xi\eta, 2nq \prod_{d \in S} p_d^{(i)}) = 1.$

Next, choose z satisfying the additional congruences

(9) $z \equiv -y \pmod{\xi}, \quad z \equiv -x \pmod{\eta},$

in the form

(10) $z = \zeta \prod_{d \in S} p_d^{(3)}$ where $(\zeta, x^n - y^n) = 1$.

Referring to the choice of $p_d^{(i)}$, q and the congruences (6), (7), we see easily that such x, y, z or ξ , η , ζ exist. Then, by a simple calculation using (5)–(10), we can show that x, y, z satisfy (1)–(3) and also $q \parallel D$. Hence, from Lemmas 1 and 2, our assertion is proved.

No. 2]

S. NAKANO

References

- M. Craig: A type of class group for imaginary quadratic fields. Acta Arith., 22, 449-459 (1973).
- [2] ——: A construction for irregular discriminants. Osaka J. Math., 14, 365-402 (1977).
- [3] S. Nakano: On the 2-rank of the ideal class groups of pure number fields. Arch. Math., 42, 53-57 (1984).
- [4] Y. Yamamoto: On unramified Galois extensions of quadratic number fields. Osaka J. Math., 7, 57-76 (1970).