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17. On Weak, Strong and Classical Solutions
of the Hopf Equation

An Example of F.D.E. of Second Order

By Atsushi INOUE
Department of Mathematics, Tokyo Institute of Technology

(Communicated by Koésaku YosIpA, M. J. A., Feb. 12, 1986)

§1. Introduction and results. Let (M, g) be a compact Riemannian
manifold of dim M =d with or without boundary oM. We denote by f(,,(M)
the space of solenoidal vector fields on M which vanish near the boundary.
H stands for the completion of the above space with respect to L:-norm,
denoted by |-|. V* stands for the completion of )°(,,(M) in the Sobolev space
of order s € Z, whose norm is denoted by ||-||,. For 1-forms, we introduce
/01},(M) analogously. The completions of it with corresponding norms are
denoted by H and 7*, respectively. The space of symmetric tensor fields
with 2 contravariant (or covariant) indices is denoted by ST,(M) (or
ST*M).)

Our aim of this paper is to ‘solve’ the following Functional Derivative
Equation (F.D.E.):

(I) Find a functional W(t, »), for ¢t € (0, ), € /i‘(M) satisfying

1.1) yg‘th(t, 77)=jM[—i{ (@) — F](x)m(x)} W,y

dpu(a)dn ()

() () SV 7 5W(f ;7) in (@) (@ HW (R, n)]
12 - 5W(t t,7)

1.2 . 0,

d.2) v g(x) ot {Jg( ) on(x) }

1.3) Wt 0)=1

and

(1.4) WO, p)=W@»).

Here 7(x)=7,(x)dx’ e/olf,(M), and f(x, t)=f(x, t)(0/0x") e)i',,(M) for a.e. t,
W () is a given positive definite functional on /il(M) satisfying
_ 1 W o(n) }

(1.5) W0=1 and o 0 {«/ @5 o

Hereafter, we use Einstein’s convention for contracting indices and
also the terminology and symbols from Riemannian geometry and func-
tional analysis. The definition of functional derivatives

émt’ 7) and Eﬂ(t’ 7)
PG 37(2)37,Y)

is given, for example, in E. Hopf [3].

A weak golution of Problem (I) will be afforded by considering the
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following problem.
(II) Find a family of Borel measures {¢}ic;<.. on H satisfying

([ 90w B
JO jﬂ ot dﬂt(u)dt jy @(0, u)dﬁo(u)

_ 9 . : k 0d(t, u)
= [ @ g v@rr@eaewlTe0
i) e 0P W) oy 4y 0O, )
B () 7 D e, ) ]dgxd,at(u)dt

for any test functional @(¢, «) with compact support in ¢. The given data
are a measure g, and a right member f(?).

Our results are

Theorem A. For any tnitial data y,, o Borel measure on H satisfying

[, a+lupdp<oo
and any right term f(-) e L*0, oo ; V'), there exists a solution {u}ocic Of
1.

Theorem B. Let W,(-) be a positive definite functional on H and

satisfy

traceg .z [—W,,(0)]<co.
For any right term f(-)e L0, oo ; V'), there exists a strong solution of
Problem (I).

Theorem C. Let oM=¢ and l=[d/2]+1. Let W,-) be a positive

definite functional on H, be of V-'-exponential type and satisfy

traceg g [—W,,,(0)]<oco and tracep..y:[—W,,,(0)]<co.
For any f(-) given in L1, (0, oo ; V'), there exists a unique classical solution
W(t, n) of Problem (I) on [0, T*) where T* is defined from W, and f, inde-
pendent of v.

Remarks. (1) Technically, we extend the arguments in Foiag [1, 2] to
the case where T'=o00 and M is an arbitrary compact Riemannian manifold
with or without boundary. Especially, there is no restriction on the di-
mension d of M. In Theorems A and B, actually M is rather arbitrary, but
in Theorem C, we must restrict our attention, to the case where oM =¢.
(2) We give the strict meaning to the ‘trace’ of the second order functional
derivatives in Problem (I), that is,

W 0 g 0

an(x)on,(x) dxt T dx’

is defined as a distributional element in ST,(M), in fairly general situa-
tions. This gives the mathematical meaning to the functional derivatives
of order 2 appeared in (I.1).

Detailed proofs will be given somewhere else.

§2. Definitions and the ideas of the proofs.

Definition. A functional defined on [0, T) X H, (T <o) will be called
a classical solution of Problem (I) on (0, T) if there exists a set D, dense
in ¥*, for some s, containing /011,,(M) such that: (1) For each ¢ ﬁ, W(t, )
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is absolutely continuous on [0, T). (2) For each 1, 7,
W,y
0n(x)dn,(x)
exists a.e. t on [0, T) as an element of L], (M) for each 5 ¢ D. Moreover,
FW(t, n) 0 2 0

dn(x)dy,(x) ox' = oa’
belongs to ST,(M). (3) W(t, 5) satisfies (I.1)-(I.4) a.e. in ¢ as functions for
each pe D.

Definition. A functional defined on [0, T) X H, (T < ) will be called
a strong solution of Problem (I) on (0, 7) if there exists a set D), dense in
V¢, for some s, containing _/olf,(M) such that: (1) For each 7]€D~, W(t, p)
belongs to L, [0, T) and is right continuous in ¢ at t=0.

(2) FW (L, ) 0 g 0

on(x)on,(x) ox ox’
exists a.e. t on (0, T) as a distributional element in ST,(M) for each 5e D.
(3) W(t, n) satisfies (I.1)-(I.4) as distributions for each e D.

Definition. A positive definite functional W on H will be called of -
exponential type for any ye H when the function s—W(sy) defined on R
can be extended analytically to an entire function W({; ) on the complex
plane C satisfying

W p<Zc,-ecltmetini-e foralleC, ye H,
where ¢, and ¢, are some constants depending on W.

Now, we introduce the notion of test functionals.

Definition. A real functional @(-, -) defined on [0, co) X ¥ is called a
test functional if it satisfies the followings: (1) @(-, -) is continuous on
[0, c0) X V and verifies |D,(, w)|<c,+c,|ul. (2) D(-, -) is Fréchet H-differ-
entiable in the direction V. (3) Moreover, @,(-, -) is continuous from [0, o)
XV to 7* and is bounded. That is, there exists a constant ¢, depending
on @ such that ||@,(t, w)|, < ¢, for all (¢, u) € [0, o) X V.

We call that a test functional @(-, -) has a compact support in ¢ if
there exists a constant T, depending on @ such that &(¢t, -)=0 for t=T,.

Definition. A family of Borel measures {z(f, -)}ic;<.. on H is called a
weak solution of Problem (I) on (0, o) if it satisfies (II) for any test func-
tional @(-, -) with compact support in ¢.

Using the Galerkin approximation of the Navier-Stokes equation on
(M, g), which appears as a characteristic equation of (I), we may construct
a weak solution of (I), that is, a solution of (II), by modifying the argu-
ments in Foiag[1]. Theorem B is essentially given by the Fourier-Stieltjes
transform of the measures obtained in Theorem A, combining with a little
geometrical consideration. In proving Theorem C, we use the higher order
energy inequality (which is local in time) given, for example, in T. Kato
[4] or R. Temam [5].




No. 2] Weak, Strong and Classical Solutions of the Hopf Equation 57

References

[1] C. Foias: Statistical study of Navier-Stokes equations I. Rend. Sem. Mat. Padova,
48, 219-349 (1973).

[2] ——: Statistical study of Navier-Stokes equations II. ibid., 49, 9-123 (1973).

[3]1 E. Hopf: Statistical hydrodynamics and functional calculus. J. Rat. Mech. Anal.,
1, 87-123 (1952).

[4] T. Kato: Nonstationary flows of viscous and ideal fluids in R®. J. Funec. Anal,,
9, 296-305 (1972).

[6] R. Temam: On the Euler equations of incompressible perfect fluids. ibid., 20,
32-48 (1975).



