14. Interpolation of Linear Operators in Lebesgue Spaces with Mixed Norm

By Satoru Igari
Mathematical Institute, Tôhoku University
(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1986)

The aim of this paper is to show that a bounded linear operator in the Lebesgue spaces $L^{t}\left(M^{n} ; L^{s}\left(M^{m}\right)\right)$ with mixed norm is bounded in the space $L^{u}\left(M^{m+n}\right)$ under a condition on (s, t), where $1 / u=(m / s+n / t) /(m+n)$. As applications we shall have a result on Riesz-Bochner summing operator and on the restriction problem of Fourier transform.

1. Notations. Let (M, \mathcal{M}, μ) and (N, \mathcal{I}, ν) be σ-finite measure spaces, and $\left(M_{j}, \mathcal{M}_{j}, \mu_{j}\right)(j=0,1, \cdots)$ be copies of (M, \mathcal{M}, μ). Let $d \geq 2$ and $(\bar{M}, \overline{\mathcal{M}}, \bar{\mu})$ be the product measure space $\prod_{j=0}^{d-1}\left(M_{j}, \mathscr{M}_{j}, \mu_{j}\right)$. For a subset $p=\left\{p_{0}, p_{1}\right.$, $\left.\cdots, p_{m-1}\right\} \subset\{0,1, \cdots, d-1\}$ put

$$
(M(p), \mathcal{M}(p), \mu(p))=\prod_{j \in p}\left(M_{j}, \mathscr{M}_{j}, \mu_{j}\right)
$$

Thus

$$
d \mu(p)\left(x_{p_{0}}, \cdots, x_{p_{m-1}}\right)=d \mu_{p_{0}}\left(x_{p_{0}}\right) \cdots d \mu_{p_{m-1}}\left(x_{p_{m-1}}\right) \quad \text { and } \quad d \mu=d \mu(p) \times d \mu\left(p^{\prime}\right)
$$ where p^{\prime} denotes the complement $\{0,1, \cdots, d-1\} \backslash p .(\bar{N}, \overline{\mathfrak{N}}, \bar{\nu})$ and $(N(p)$, $\mathscr{N}(p), \nu(p))$ will be defined similarly.

Let $1 \leq s, t<\infty . \quad L^{s}(\bar{M})$ denotes the Lebesgue space with norm $\|f\|_{s}$ $=\left(\int_{\bar{M}}|f|^{s} d \bar{\rho}\right)^{1 / s}$ and $L^{t}\left(L^{s}\right)=L^{t}\left(M\left(p^{\prime}\right) ; L^{s}(M(p))\right)$ the Lebesgue space with mixed norm

$$
\|f\|_{(t, s ; p)}=\left[\int_{M\left(p^{\prime}\right)}\left(\int_{M(p)}|f|^{s} d \mu(p)\right)^{t / s} d \mu\left(p^{\prime}\right)\right]^{1 / t} .
$$

The definition for the cases $s=\infty$ and/or $t=\infty$ will be modified obviously.
Let m and n be positive integers such that $d=m+n$. We define $u \geq 1$ by

$$
1 / u=(m / s+n / t) / d
$$

For $1 \leq s \leq \infty, s^{\prime}$ will denote the conjugate exponent $s /(s-1)$.
P denotes the family $\{p \in\{0,1, \cdots, d-1\} ; \operatorname{card}(p)=m\}$ if $m \geq n$ and $P=\{0,1, \cdots, d-1\}$ otherwise. Let $\left\{I_{p} ; p \in P\right\}$ be a family of disjoint arcs in the unit circle of length $2 \pi / \operatorname{card}(P)$.

2. Theorems.

Lemma 1. Assume $1 \leq s \leq t \leq \infty$. Let w and f be simple functions in $(\bar{M}, \bar{M}, \bar{\mu})$. Then there exist functions $W^{z}(x)$ and $F^{z}(x)$ on \bar{M} such that
(i) $W^{z}(x)$ and $F^{z}(x)$ are bounded and holomorphic in $|z|<1$ for every $x \in \bar{M}$, and measurable in x for every $|z|<1$,
(ii) $\quad W^{0}(x)=w(x)$ and $F^{0}(x)=f(x)$,
(iii) $\left\|W^{z}\right\|_{(t, s ; p)} \leq\|w\|_{u}$ for $z \in \operatorname{int}\left(I_{p}\right)$ and $p \in P$,
(iv) furthermore if f is of the form $f_{0}\left(x_{0}\right) f_{1}\left(x_{1}\right) \cdots f_{d-1}\left(x_{d-1}\right)$, then $\left\|F^{z}\right\|_{\left(t^{\prime}, s^{\prime} ; p\right)} \leqq\|f\|_{u^{\prime}}$.
As an easy consequence of Lemma we get the followings.
Theorem 1. Let T be a linear operator of simple functions on ($\bar{M}, \overline{\mathcal{M}}, \bar{\mu})$ to measurable functions on (N, \mathcal{I}, ν). Let $v\left(e^{i \theta}\right)$ be a measurable function such that $1 \leq v\left(e^{i \theta}\right) \leq \infty$ and

$$
1 / v=\int_{0}^{2 \pi} 1 / v\left(e^{i \theta}\right) \frac{d \theta}{2 \pi} .
$$

Let $1 \leq u_{0} \leq u_{1} \leq \infty$ and

$$
1 / u=\left(m / u_{0}+n / u_{1}\right) / d .
$$

Suppose

$$
\|T w\|_{v\left(e^{i \theta)}\right.} \leq C\left(e^{i \theta}\right)\|w\|_{\left(u_{1}, u_{0} ; p\right)}
$$

for all simple functions $w, \theta \in \operatorname{Int}\left(I_{p}\right)$ and $p \in P$, where $C\left(e^{i \theta}\right)$ is measurable. Then

$$
\|T w\|_{v} \leq C\|w\|_{u},
$$

with

$$
C=\exp \left(\int_{0}^{2 \pi} \log C\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}\right)
$$

Theorem 2. Let T be a linear operator of simple functions on \bar{M} to measurable functions on \bar{N}. Let $1 \leq u_{0} \leq u_{1} \leq \infty$ and $1 \leq v_{1} \leq v_{0} \leq \infty$. Srippose that

$$
\|T w\|_{\left(v_{1}, v_{0} ; p\right)} \leq C_{p}\|w\|_{\left(u_{1}, u_{0} ; p\right)}
$$

for all w and $p \in P$.
If

$$
1 / u=\left(m / u_{0}+n / u_{1}\right) / d \quad \text { and } \quad 1 / v=\left(m / v_{0}+n / v_{1}\right) / d
$$

then

$$
\|T w\|_{v} \leq C\|w\|_{u}
$$

where

$$
C=\left(\prod_{p \in P} C_{p}\right)^{1 / \operatorname{ard}(P)} .
$$

Theorem 3. Let T be a linear operator of simple functions on \bar{M} to measurable functions on \bar{N}. Let $1 \leq u_{1} \leq u_{0} \leq \infty$ and $1 \leq v_{1} \leq r_{0} \leq \infty$. Suppose that

$$
\|T f\|_{\left(v_{1}, v_{0} ; p\right)} \leq C(p)\|f\|_{\left(u_{1}, u_{0} ; p\right)}
$$

for all simple functions f of the form $f_{0}\left(x_{0}\right) \cdots f_{d-1}\left(x_{d-1}\right)$ and $p \in P$. Then $\|T f\|_{v} \leq C\|f\|_{u}$
for all f of the product form, where u, v and C are defined in Theorem 2.
Remark 1. Suppose $1 \leq u_{1} \leq u_{0} \leq \infty$. Then the conclusion of Theorem 1 holds for w of the form $w_{0}\left(x_{0}\right) w_{1}\left(x_{1}\right) \cdots w_{d-1}\left(x_{d-1}\right)$, but in general, is dces not hold.

Remark 2. The family of the spaces $L^{v\left(e^{i \theta}\right)}(N)$ in Theorem 1 is recl ced by the more general family of Banach spaces $B[z]$ introduced by [1].
3. Applications. For a reas nable function f on the d-dimersional Euclidean space R^{d} the Riesz-Bochner operator $s^{\varepsilon}(f)$ of order ε is defined
by $s^{\varepsilon}(f)^{\wedge}(\xi)=\left(1-|\xi|^{2}\right)_{+}^{\varepsilon} \hat{f}(\xi)$, where \hat{f} is the Fourier transform of f and a_{+} $=\max (0, a)$. Let P be the family with $m=d-2$ and we use the notations in $\S 1$ with $M=N=R^{1}$.

Theorem 4. Let $\varepsilon>0$. Then

$$
\left\|s^{\varepsilon}(f)\right\|_{(4,2 ; p)} \leq C\|f\|_{(4,2 ; p)}
$$

for all $p \in P$ and f, where C is a constant independent of f.
Applying Theorem 3 to Theorem 4 we get
Theorem 5. Let $\varepsilon>0$. Then

$$
\left\|s^{\varepsilon}(f)\right\|_{2 d /(d+1)} \leq C\|f\|_{2 d /(d+1)}
$$

for all f of the form $f_{0}\left(x_{0}\right) f_{1}\left(x_{1}\right) \cdots f_{d-1}\left(x_{d-1}\right)$.
Another application is the following.
Theorem 6. If f is a continuous function of the form $f_{0}\left(x_{0}\right) f_{1}\left(x_{1}\right) \ldots$ $f_{d-1}\left(x_{d-1}\right)$ with compact support, then

$$
\left[\int_{S^{a-1}}|\hat{f}(\xi)|^{2}\left|\xi_{0} \cdots \xi_{d-1}\right|^{1 / d} d \sigma(\xi)\right]^{1 / 2} \leq C\|f\|_{2 d /(d+1)}
$$

with a constant independent of f.
A detailed proof of the theorems will be published elsewhere.

Reference

[1] R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss: A theory of complex interpolation for families of Banach spaces. Adv. in Math., 43, 203-229 (1982).

