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0. Introduction. In this note we show how the basics of the
Malliavin calculus, see e.g. [5, 6], can be formulated in the rame work of
Hida’s white-noise calculus [1, 2, 4].

The original motivation of Malliavin .to introduce his calculus was to
prove statements about the distributions generated by Wiener-functionals,
particularly whether these distributions are absolutely continuous. It turns
out that his method can be expressed in a rather simple manner by the
white-noise calculus. Only basic formulae are needed, such as the chain
rule, integration by parts for the 3 derivatives and the product rule for 3*.

Throughout this note we adopt the notation of Kuo [4], however we
shall use the definition of the 3-operator given in [3]; for general back-
ground see also [1].

1. The chain rule. In this section we establish the chain rule for
Let (’(R), , d) be white noise and consider a functional 9 on ’(R).

For fixed x e ’(R), let 9x be the functional on q(R) defined by 9x()=9(x+),
e (R).

Proposition. Let 9e LP(d/), pl, so that 9() and j 9()d/(x) are

Frdchet-differentiable on (R). Then

(11) f :(,)gp(x)= j’(t)
Corollary.

(1.2) (3)(+ x) ( )()
Sketch of proof. (1.1) follows by use of Gteaux-derivatives and the

dominated convergence theorem;the additional use of the chain rule or
Frchet-derivatives gives (1.2).

Lemma (chain rule). If 9= (9, ", 9) is an R-valued ’(R)-functional,
with each satisfying the assumptions of the proposition and F e C(R, R),
so that F9 e L(dg), q)l, then

d

(1.3)
i=l

Here F, denotes the iTM partial derivative o/F.
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This lemma ollows easily rom (1.1), (1.2) and the chain rule for
Frchet-derivatives.

2. A link between white.noise and Malliavin calculi. Expressing
the Wiener process B(t) at time t as x, 10,)}, x e ’(R), [1, 4], we consider
a Wiener-functional as an q(R)-functional , (x)=((x, 10,.)}).

Let q (and hence ) take values in R, ? satisfying the same hypothesis
as in section 1, let F e .(R). Consider

I "=.[ (F, )(x)(x)dz(x), 1 < <d,(2.1)

some (R)-functional. According to Malliavin [5] (see also [6]) we are
interested in a bound o the orm IIlconst.

Define the white-noise unctional

(2.2) <,(o, >}(x)"= ()(x)()(x)dt, l_i, ]<_d.

Suppose that the matrix (((, }}(x)) has (/-a.e.) an inverse (x). Then we
can invert (1.3)"

(2.3) (r,. )(x)= [ (Fo )(x)Y(x)(t)(x)dt (/-a.e.).
i=l J

Inserting (2.3)into (2.1), using Fubini’s theorem and integration by
parts yields

(2.4) I= Fo
i---1

Using the product rule for 3* [3], we find

I (F ?)(x)F(x) alp(x)(2.5.a)

with

(2.5.b) F(x)=__ {(x)’(x)IO*O(x)dt-(x)((% }}(x)-(x)((’, )}(x)}.
This is the analogue of the basic formula of the Malliavin calculus in the
white-noise language. With the lemma in 1.1 of [5] we have the following
(setting ?- 1).

Theorem. Let be associated with the Wiener functional , as

before. Assume that exists /-a.e. and that F e L(d/O, lld. Then
the distribution of on R is absolutely continuous w.r.t. Lebesgue measure.

Iterations o (2.5)for higher partial derivatives of F, provide infor-
mation on the differentiability of the density

In the applications the crucial point is to. prove the invertibility
(((, }). To study this problem, Stroock derives identities for this expres-
sion in [6], in case that is defined by a stochastic integral or stochastic
differential equation.

We conclude this note in showing how such an identity can be found
in our formulation. For simplicity we choose to be given as a one dimen-
sional stochastic integral

(t)=i e(s)dB(s),
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(e(.) nonanticipating).

[2, 3]. We easily find

(2.6)

and hence

In white-noise language the stochastic integral is

(t)--: *e(s)ds,

u(t)==o * (3ue(s))ds+ e(u)

(2.7) ((p(t), p(t)))--o (e(s)2/2e(s) o *(se(u))du+(o 3*(se(u))du))ds"
A little computation yields the result

(2.8) (((t),

It is now rather straightforward to parallel Stroock’s treatment [6]
of Malliavin’s calculus, in particular to apply it to stochastic differential
equations.
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