102. On Automorphisms of Algebraic K3 Surfaces which Act Trivially on Picard Groups

By Shigeyuki Kondō
Department of Mathematical Sciences, Tokyo Denki University
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 12, 1986)

1. Introduction. In this note we study automorphisms of algebraic $K 3$ surfaces over C which act trivially on Picard groups. Recall that a K3 surface X is a nonsingular compact complex surface with trivial canonical bundle and $\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)=0$. The second cohomology group $H^{2}(X, Z)$ admits a canonical structure of a lattice of rank 22 induced from the cup product. We denote by S_{x} the Picard group of X. Then S_{X} has a structure of a sublattice of $H^{2}(X, Z)$. Let T_{X} be the orthogonal complement of S_{X} in $H^{2}(X, Z)$ which is called a transcendental lattice of X. Put $H_{X}=\operatorname{Ker}(\operatorname{Aut}(X)$ $\rightarrow \operatorname{Aut}\left(S_{X}\right)$). Then H_{X} is a cyclic group \boldsymbol{Z} / m of order m, and $\phi(m)$ is a divisor of the rank of T_{X} where ϕ is the Euler function ([3], Corollary 3.3).

Theorem. Let X be an algebraic $K 3$ surface and m_{X} the order of H_{X}. Assume that the lattice T_{x} is unimodular (i.e. $\operatorname{det}\left(T_{X}\right)= \pm 1$). Then
(1) m_{x} is a divisor of 66,44 or 12.
(2) Suppose that $\phi(m)=\operatorname{rank}\left(T_{X}\right)$. Then m_{X} is equal to either 66 or 42. Moreover for $m=66$ or 42 , there exists a unique (up to isomorphisms) algebraic K3 surface with $m_{x}=m$.

In case T_{X} is non unimodular, Vorontsov [8] proved a similar result as the above theorem. However his statement for unimodular case is not complete and contains a mistake, i.e. he claims that there exists an algebraic $K 3$ surface with $m_{X}=12$ and $\operatorname{rank}\left(T_{X}\right)=\phi(12)$ (his proof has not yet published). His method is based on the theory of a cyclotomic field $\boldsymbol{Q}(m)$. Here we use only the theory of elliptic surfaces due to Kodaira [1].
2. Example. In this section we construct two examples of algebraic $K 3$ surfaces with $m_{x}=66,42$.
(2.1) Example 1. Let (x, y, z) be a system of a homogeneous coordinate of \boldsymbol{P}^{2}. We take two copies $W_{0}=\boldsymbol{P}^{2} \times \boldsymbol{C}_{0}$ and $W_{1}=\boldsymbol{P}^{2} \times \boldsymbol{C}_{1}$ of the cartesian product $\boldsymbol{P}^{2} \times \boldsymbol{C}$ and form their union $W=W_{0} \cup W_{1}$ by identifying (x, y, z, u) $\in W_{0}$ with $\left(x_{1}, y_{1}, z_{1}, u_{1}\right) \in W_{1}$ if and only if $u \cdot u_{1}=1, x=x_{1}, y=u_{1}^{6} \cdot y$ and $z=$ $u_{1}^{2} \cdot z_{1}$. We define a subvariety X of W by the following equations:

$$
\begin{gather*}
z^{3}-y\left\{y^{2} \prod_{i=1}^{12}\left(u-\xi_{i}\right)-x^{2}\right\}=0 \\
z_{1}^{3}-y_{1}\left\{y_{1}^{2} \prod_{i=1}^{12}\left(1-u_{1} \cdot \xi_{i}\right)-x_{1}^{2}\right\}=0 \tag{2.2}
\end{gather*}
$$

where $\xi_{i}(i=1,2, \cdots, 12)$ are distinct comlex numbers. Let π be a projection from X to the u-sphere P^{1}. It is easy to see that X is non singular
and $\pi^{-1}(u)$ is a non singular elliptic curve with the functional invariant zero for every u except $\xi_{i}(i=1, \cdots, 12)$. Moreover we can see that $\pi^{-1}\left(\xi_{i}\right)$ is a singular fibre of type II, namely a rational curve with one cusp, and X is a $K 3$ surface. The curve $L=\{y=z=0\}=\left\{y_{1}=z_{1}=0\right\}$ gives a holomorphic section of the elliptic pencil π. And also the form $\omega=w^{\prime} d u \wedge d v$ gives a nowhere vanishing holomorphic 2-form on X where ($u, w=z / x, v=y / x$) is an affine coordinate. The above construction of X is due to Shiga [6], Remark 1-3 (also see [2]). We define an automorphism g_{1} of X as follows: $g_{1}(x, y, z, u)=\left(-x, y, e_{3} \cdot z, u\right), g_{1}\left(x_{1}, y_{1}, z_{1}, u_{1}\right)=\left(-x_{1}, y_{1}, e_{3} \cdot z_{1}, u_{1}\right)$ where e_{3} is a primitive 3 -th root of unity. Obviously g_{1} is of order 6.

In the following we assume that $\xi_{12}=0$ and $\xi_{i}=e_{11}^{i}(i=1, \cdots, 11)$ where e_{11} is a primitive 11-th root of unity. Then $g_{2}(x, y, z, u)=\left(x, e_{11}^{8} \cdot y, e_{11}^{10} \cdot z, e_{11}^{6} \cdot u\right)$, $g_{2}\left(x_{1}, y_{1}, z_{1}, u_{1}\right)=\left(x_{1}, y_{1}, z_{1}, e_{11}^{5} \cdot u_{1}\right)$ defines an automorphism of X of order 11 . Put $g=g_{1} \circ g_{2}=g_{2} \circ g_{1}$. Then g is of order 66 and $g^{*} \omega=-e_{3} \cdot e_{11}^{5} \cdot \omega$. Since $\phi(66) \mid \operatorname{rank}\left(T_{x}\right)$, we have $\operatorname{rank}\left(T_{x}\right)=20$. Hence $\operatorname{rank}\left(S_{x}\right)=2$ (recall that $\left.\operatorname{rank} H^{2}(X, Z)=22\right)$. Note that S_{X} contains both classes of a fibre of π and the section L which form a unimodular lattice $U=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ of rank 2. Hence S_{X} is isomorphic to U. Since T_{X} is the orthogonal complement of S_{X} in the unimodular lattice $H^{2}(X, Z), T_{X}$ is also unimodular (cf. [3], §1).
(2.3) Remark. In the equations (2.2), put $\xi_{l}=e_{12}^{i}(i=1, \cdots, 12)$ where e_{12} is a primitive 12 -th root of unity. Then we obtain an algebraic $K 3$ surface with $m_{x}=12$ and $S_{x}=U$.
(2.4) Example 2. With the same notation as in Example 1, we define a subvariety Y^{\prime} of W by the following equations:

$$
\begin{aligned}
& z_{3}-y\left\{y^{2}\left(u-\xi_{0}\right)^{5} \prod_{i=1}^{7}\left(u-\xi_{i}\right)-x^{2}\right\}=0, \\
& z_{1}^{3}-y_{1}\left\{y_{1}^{2}\left(1-u \xi_{0}\right)^{5} \prod_{i=1}^{7}\left(1-u \xi_{i}\right)-x_{1}^{2}\right\}=0 .
\end{aligned}
$$

It is easy to see that Y^{\prime} has a singularity of type E_{8} at $\left(0,1,0, \xi_{0}\right)$. Let Y be a minimal resolution of Y^{\prime}. Then Y is a $K 3$ surface. Let $\pi: Y \rightarrow \boldsymbol{P}^{1}$ be a map induced from a projection from Y^{\prime} to the u-sphere \boldsymbol{P}^{1}. We can see that $\pi^{-1}(u)$ is a non singular elliptic curve with the functional invariant zero for every u except $\xi_{i}(i=0,1, \ldots, 7)$. Moreover $\pi^{-1}\left(\xi_{0}\right)$ is a singular fibre of type II* and $\pi^{-1}\left(\xi_{i}\right)$ is a singular fibre of type II $(i=1, \cdots, 7)$. Now we put $\xi_{0}=0$ and $\xi_{i}=e_{7}^{i}(i=1, \cdots, 7)$ where e_{7} is a primitive 7 -th root of unity. Then in the similar way as in Example 1, we can construct an automorphism g of order 42. It is easy to see that T_{x} is isomorphic to a unimodular lattice $U \oplus U \oplus E_{8}$ where E_{8} is a negative definite lattice of rank 8 associated with the Dynkin diagram of type E_{8}. From the construction, g^{*} acts on S_{X} as identity.
3. Proof of Theorem. First we recall that T_{X} is isomorphic to $U \oplus U, U \oplus U \oplus E_{8}$ or $U \oplus U \oplus E_{8} \oplus E_{8}$ because T_{X} is an even unimodular lattice (cf. [5]). Hence S_{X} is isomorphic to $U \oplus E_{8} \oplus E_{8}, U \oplus E_{8}$ or U, respectively. The following Lemma follows from [4], § 3, Corollary 3 and the classification of singular fibres of elliptic pencils [1].
(3.1) Lemma. X has an elliptic pencil π with a section. Its only reducible singular fibre (if exists) is of type $\mathrm{II*}$.
(3.2) Proof of the assertion (2). In case $T_{X}=U \oplus U$, then $m_{X}=12$, 10 or 8 . Since $S_{X}=U \oplus E_{8} \oplus E_{8}$, the elliptic pencil π has two reducible singular fibres of type II^{*}, and other singular fibres are either of type II or of type I_{1}. We denote by r, resp. s, the number of singular fibres of type II, resp. type I_{1}. Then by the formula [1], (12.6), we have $2 r+s=4$. Note that any $g\left(g \in H_{X}\right)$ preserves the structure of the pencil π and a section of π, and hence the order of the restriction of g on fibres is a divisor of 6 or 4 . If g is of order 12 , then we can see that $(r, s)=(2,0)$ and the order of the restriction of g on fibres is 6 . However this is impossible since g^{6} acts on X as identity. Similarly we conclude $m_{x} \neq 12,10$ and 8.

In the same way, we have $m_{x}=66$ if $T_{x}=U \oplus U \oplus E_{8} \oplus E_{8}$ and $m_{X}=42$ or 26 if $T_{x}=U \oplus U \oplus E_{8}$. Moreover if $m_{x}=66$, then the order of the restriction of H_{X} on fibres is divisible by 3 and hence the functional invariant of π is a constant $(=0)$. Hence all singular fibres of π are of type II. Similarly if $m_{x}=42$, then π has one singular fibre of type II* and 7 singular fibres of type II. We now claim that $m_{x}=26$ does not occur. If g is an automorphism of order $26\left(g \in H_{x}\right)$, then π has 14 singular fibres of type I_{1}. g fixes one singular fibre F of type I_{1} and acts on the set of other 13 singular fibres of type I_{1} as a permutation of order 13. Since g preserves a node p of F and a section of π, F is a fixed curve of g^{2}. Hence g^{2} acts on the tangent space of X at p as identity. This is a contradiction because $\left(g^{2}\right)^{*} \omega_{X}=e_{13} \cdot \omega_{X}$ where ω_{X} is a nowhere vanishing holomorphic 2-form of X and e_{13} is a primitive 13 -th root of unity.
(3.3) Uniqueness of $K 3$ surfaces with $m_{X}=66,42$. Let X be an algebraic $K 3$ surface with $m_{X}=66$. We have already seen that such $K 3$ surface exists (§ 2). By the above observation (3.2), X must have an elliptic pencil $\pi: X \rightarrow \boldsymbol{P}^{1}$ with a section L which has 12 singular fibres of type II. Denote by $\left\{\xi_{i}\right\}$ the set of points of \boldsymbol{P}^{1} such that $\pi^{-1}\left(\xi_{i}\right)$ is singular $(i=0,1$, $\cdots, 11)$. We may assume that g fixes ξ_{0} and acts on $\left\{\xi_{1}, \cdots, \xi_{11}\right\}$ as a permutation. Also g induces an automorphism of order 6 on fibres of π. Now we take a homology basis of $H_{2}(X, Z)$ as follows (see [6], § 2) : Let F be a smooth fibre of π and $\left\{\gamma_{1}, \gamma_{2}\right\}$ a basis of $H_{1}(F, Z)$. And let $\alpha_{i}(i=1,2$, $\cdots, 10)$ be an oriented arc in \boldsymbol{P}^{1} which starts from ξ_{0} and goes to ξ_{i} so that α_{i} does not intersect any other α_{j}. We set

$$
\begin{aligned}
& C_{2 i-1}=\alpha_{i} \times \gamma_{1}, \\
& C_{2 i}=\alpha_{i} \times \gamma_{2} \quad \text { for } i=1, \cdots, 10 \\
& C_{21}=F \\
& C_{22}=L
\end{aligned}
$$

Then $\left\{C_{1}, \cdots, C_{22}\right\}$ gives a basis of $H_{2}(X, Z)$ ([6], Proposition 2-1). The action of g_{*} on $H_{2}(X, Z)$ is unique up to $\operatorname{Aut}\left(H_{2}(X, Z)\right)$. Note that a nowhere vanishing holomorphic 2-form on X is an eigenvector of g^{*} acting on $H^{2}(X, C)$. Hence the uniqueness of algebraic $K 3$ surface with $m_{X}=66$
easily follows from the Torelli theorem for algebraic K3 surfaces ([4]). The same observation shows the uniqueness of algebraic $K 3$ surface with $m_{x}=42$. We omit the proof.
(3.4) Proof of the assertion (1). The same argument as in (3.2) shows that m_{x} is a divisor of 66,42 or 12 except in the following two cases: $S_{X}=U$ and $5 \mid m_{X}$ or $m_{X}=8$. In any case there exists an automorphism g of X which acts on P^{1} as a permutation of order 5 or 2 . However it follows from the Lefschetz fixed point formula [7], Lemma 1.6 that these cases do not occur. In fact the Lefschetz number of g is equal to $4-20 / \phi(|g|)$ which is negative integer. On the other hand, the fixed curves of g are contained in fibres of π, and hence their Euler numbers are non negative, which is a contradiction.

Added in Proof. I. Dolgachev and T. Shioda have informed the author that they gave another simple construction of algebraic $K 3$ surfaces with $m_{x}=66,42$ and 12.

References

[1] Kodaira, K.: On compact analytic surfaces II; III. Ann. Math., 77, 563-626; 78, 1-40 (1963).
[2] --: On the structure of compact complex analytic surfaces I. Amer. J. Math., 86, 751-798 (1964).
[3] Nikulin, V. V.: Finite automorphism groups of Kähler surfaces of type K3. Proc. Moscow Math. Soc., 38, 75-137 (1979).
[4] Piatetskii-Shapiro, I. and Shafarevich, I. R.: A Torelli theorem for algebraic surfaces of type K3. Math. USSR Izv., 35, 530-572 (1971).
[5] Serre, J. P.: Cours d'arithmétique. Presses Univ. de France, Paris (1970).
[6] Shiga, K.: One attempt to the K3 modular function II. Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4), 8, no. 1, 157-182 (1981).
[7] Ueno, K.: A remark on automorphisms of Enriques surfaces. J. of Fac. Sci. Univ. Tokyo, Sec. IA, vol. 23, no. 1, 149-165 (1976).
[8] Vorontsov, S. P.: Automorphisms of even lattices that arise in connection with automorphisms of algebraic K3 surfaces. Vestnik Moskovskogo Universiteta, Matematika, vol. 38, no. 2, 19-21 (1983).

