102. On Automorphisms of Algebraic K3 Surfaces which Act Trivially on Picard Groups

By Shigeyuki Kondō

Department of Mathematical Sciences, Tokyo Denki University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1986)

1. Introduction. In this note we study automorphisms of algebraic K3 surfaces over C which act trivially on Picard groups. Recall that a K3 surface X is a nonsingular compact complex surface with trivial canonical bundle and dim $H^1(X, \mathcal{O}_X)=0$. The second cohomology group $H^2(X, Z)$ admits a canonical structure of a lattice of rank 22 induced from the cup product. We denote by S_X the Picard group of X. Then S_X has a structure of a sublattice of $H^2(X, Z)$. Let T_X be the orthogonal complement of S_X in $H^2(X, Z)$ which is called a *transcendental lattice* of X. Put $H_X = \text{Ker}(\text{Aut}(X) \rightarrow \text{Aut}(S_X))$. Then H_X is a cyclic group Z/m of order m, and $\phi(m)$ is a divisor of the rank of T_X where ϕ is the Euler function ([3], Corollary 3.3).

Theorem. Let X be an algebraic K3 surface and m_x the order of H_x . Assume that the lattice T_x is unimodular (i.e. $\det(T_x) = \pm 1$). Then

(1) m_x is a divisor of 66, 44 or 12.

(2) Suppose that $\phi(m) = \operatorname{rank}(T_x)$. Then m_x is equal to either 66 or 42. Moreover for m = 66 or 42, there exists a unique (up to isomorphisms) algebraic K3 surface with $m_x = m$.

In case T_x is non unimodular, Vorontsov [8] proved a similar result as the above theorem. However his statement for unimodular case is not complete and contains a mistake, i.e. he claims that there exists an algebraic K3 surface with $m_x=12$ and $\operatorname{rank}(T_x)=\phi(12)$ (his proof has not yet published). His method is based on the theory of a cyclotomic field Q(m). Here we use only the theory of elliptic surfaces due to Kodaira [1].

2. Example. In this section we construct two examples of algebraic K3 surfaces with $m_x = 66, 42$.

(2.1) Example 1. Let (x, y, z) be a system of a homogeneous coordinate of P^2 . We take two copies $W_0 = P^2 \times C_0$ and $W_1 = P^2 \times C_1$ of the cartesian product $P^2 \times C$ and form their union $W = W_0 \cup W_1$ by identifying $(x, y, z, u) \in W_0$ with $(x_1, y_1, z_1, u_1) \in W_1$ if and only if $u \cdot u_1 = 1$, $x = x_1$, $y = u_1^6 \cdot y$ and $z = u_1^2 \cdot z_1$. We define a subvariety X of W by the following equations:

(2.2)
$$z^{3} - y \left\{ y^{2} \prod_{i=1}^{12} (u - \xi_{i}) - x^{2} \right\} = 0,$$
$$z_{1}^{3} - y_{1} \left\{ y_{1}^{2} \prod_{i=1}^{12} (1 - u_{1} \cdot \xi_{i}) - x_{1}^{2} \right\} = 0$$

where ξ_i $(i=1, 2, \dots, 12)$ are distinct comlex numbers. Let π be a projection from X to the *u*-sphere P^1 . It is easy to see that X is non singular

and $\pi^{-1}(u)$ is a non singular elliptic curve with the functional invariant zero for every u except ξ_i $(i=1, \dots, 12)$. Moreover we can see that $\pi^{-1}(\xi_i)$ is a singular fibre of type II, namely a rational curve with one cusp, and X is a K3 surface. The curve $L=\{y=z=0\}=\{y_1=z_1=0\}$ gives a holomorphic section of the elliptic pencil π . And also the form $\omega=w$ ' $du \wedge dv$ gives a nowhere vanishing holomorphic 2-form on X where (u, w=z/x, v=y/x) is an affine coordinate. The above construction of X is due to Shiga [6], Remark 1-3 (also see [2]). We define an automorphism g_1 of X as follows : $g_1(x, y, z, u)=(-x, y, e_3 \cdot z, u), g_1(x_1, y_1, z_1, u_1)=(-x_1, y_1, e_3 \cdot z_1, u_1)$ where e_3 is a primitive 3-th root of unity. Obviously g_1 is of order 6.

In the following we assume that $\xi_{12}=0$ and $\xi_i = e_{11}^i$ $(i=1, \dots, 11)$ where e_{11} is a primitive 11-th root of unity. Then $g_2(x, y, z, u) = (x, e_{11}^8 \cdot y, e_{11}^{10} \cdot z, e_{11}^8 \cdot u)$, $g_2(x_1, y_1, z_1, u_1) = (x_1, y_1, z_1, e_{11}^5 \cdot u_1)$ defines an automorphism of X of order 11. Put $g = g_1 \circ g_2 = g_2 \circ g_1$. Then g is of order 66 and $g^* \omega = -e_3 \cdot e_{11}^5 \cdot \omega$. Since $\phi(66) | \operatorname{rank}(T_X)$, we have $\operatorname{rank}(T_X) = 20$. Hence $\operatorname{rank}(S_X) = 2$ (recall that $\operatorname{rank} H^2(X, Z) = 22$). Note that S_X contains both classes of a fibre of π and the section L which form a unimodular lattice $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ of $\operatorname{rank} 2$. Hence S_X is isomorphic to U. Since T_X is the orthogonal complement of S_X in the unimodular lattice $H^2(X, Z), T_X$ is also unimodular (cf. [3], § 1).

(2.3) Remark. In the equations (2.2), put $\xi_i = e_{12}^i$ $(i=1, \dots, 12)$ where e_{12} is a primitive 12-th root of unity. Then we obtain an algebraic K3 surface with $m_x = 12$ and $S_x = U$.

(2.4) Example 2. With the same notation as in Example 1, we define a subvariety Y' of W by the following equations:

$$z_{3} - y\{y^{2}(u - \xi_{0})^{5} \prod_{i=1}^{7} (u - \xi_{i}) - x^{2}\} = 0, z_{1}^{3} - y_{1}\{y_{1}^{2}(1 - u\xi_{0})^{5} \prod_{i=1}^{7} (1 - u\xi_{i}) - x_{1}^{2}\} = 0,$$

It is easy to see that Y' has a singularity of type E_s at $(0, 1, 0, \xi_0)$. Let Y be a minimal resolution of Y'. Then Y is a K3 surface. Let $\pi: Y \to P^1$ be a map induced from a projection from Y' to the u-sphere P^1 . We can see that $\pi^{-1}(u)$ is a non singular elliptic curve with the functional invariant zero for every u except ξ_i $(i=0, 1, \dots, 7)$. Moreover $\pi^{-1}(\xi_0)$ is a singular fibre of type II* and $\pi^{-1}(\xi_i)$ is a singular fibre of type II $(i=1, \dots, 7)$. Now we put $\xi_0=0$ and $\xi_i=e_7^i$ $(i=1, \dots, 7)$ where e_7 is a primitive 7-th root of unity. Then in the similar way as in Example 1, we can construct an automorphism g of order 42. It is easy to see that T_x is isomorphic to a unimodular lattice $U \oplus U \oplus E_s$ where E_s is a negative definite lattice of rank 8 associated with the Dynkin diagram of type E_s . From the construction, g^* acts on S_x as identity.

3. Proof of Theorem. First we recall that T_x is isomorphic to $U \oplus U$, $U \oplus U \oplus E_{\mathfrak{s}}$ or $U \oplus U \oplus E_{\mathfrak{s}} \oplus E_{\mathfrak{s}}$ because T_x is an even unimodular lattice (cf. [5]). Hence S_x is isomorphic to $U \oplus E_{\mathfrak{s}} \oplus E_{\mathfrak{s}}$, $U \oplus E_{\mathfrak{s}}$ or U, respectively. The following Lemma follows from [4], § 3, Corollary 3 and the classification of singular fibres of elliptic pencils [1].

(3.1) Lemma. X has an elliptic pencil π with a section. Its only reducible singular fibre (if exists) is of type II*.

(3.2) Proof of the assertion (2). In case $T_x = U \oplus U$, then $m_x = 12$, 10 or 8. Since $S_x = U \oplus E_s \oplus E_s$, the elliptic pencil π has two reducible singular fibres of type II*, and other singular fibres are either of type II or of type I₁. We denote by r, resp. s, the number of singular fibres of type II, resp. type I₁. Then by the formula [1], (12.6), we have 2r+s=4. Note that any g ($g \in H_x$) preserves the structure of the pencil π and a section of π , and hence the order of the restriction of g on fibres is a divisor of 6 or 4. If g is of order 12, then we can see that (r, s) = (2, 0) and the order of the restriction of g on fibres is 6. However this is impossible since g^s acts on X as identity. Similarly we conclude $m_x \neq 12$, 10 and 8.

In the same way, we have $m_x = 66$ if $T_x = U \oplus U \oplus E_s \oplus E_s$ and $m_x = 42$ or 26 if $T_x = U \oplus U \oplus E_s$. Moreover if $m_x = 66$, then the order of the restriction of H_x on fibres is divisible by 3 and hence the functional invariant of π is a constant (=0). Hence all singular fibres of π are of type II. Similarly if $m_x = 42$, then π has one singular fibre of type II* and 7 singular fibres of type II. We now claim that $m_x = 26$ does not occur. If g is an automorphism of order 26 ($g \in H_x$), then π has 14 singular fibres of type I₁. g fixes one singular fibre F of type I₁ and acts on the set of other 13 singular fibres of type I₁ as a permutation of order 13. Since g preserves a node pof F and a section of π , F is a fixed curve of g^2 . Hence g^2 acts on the tangent space of X at p as identity. This is a contradiction because $(g^2)^* \omega_x = e_{13} \cdot \omega_x$ where ω_x is a nowhere vanishing holomorphic 2-form of X and e_{13} is a primitive 13-th root of unity.

(3.3) Uniqueness of K3 surfaces with $m_X = 66$, 42. Let X be an algebraic K3 surface with $m_X = 66$. We have already seen that such K3 surface exists (§ 2). By the above observation (3.2), X must have an elliptic pencil $\pi: X \rightarrow P^1$ with a section L which has 12 singular fibres of type II. Denote by $\{\xi_i\}$ the set of points of P^1 such that $\pi^{-1}(\xi_i)$ is singular $(i=0, 1, \dots, 11)$. We may assume that g fixes ξ_0 and acts on $\{\xi_1, \dots, \xi_{11}\}$ as a permutation. Also g induces an automorphism of order 6 on fibres of π . Now we take a homology basis of $H_2(X, Z)$ as follows (see [6], § 2): Let F be a smooth fibre of π and $\{\gamma_1, \gamma_2\}$ a basis of $H_1(F, Z)$. And let α_i $(i=1, 2, \dots, 10)$ be an oriented arc in P^1 which starts from ξ_0 and goes to ξ_i so that α_i does not intersect any other α_j . We set

$$C_{2i-1} = \alpha_i \times \mathcal{T}_1,$$

$$C_{2i} = \alpha_i \times \mathcal{T}_2 \quad \text{for } i=1, \dots, 10,$$

$$C_{21} = F,$$

$$C_{22} = L.$$

Then $\{C_1, \dots, C_{22}\}$ gives a basis of $H_2(X, Z)$ ([6], Proposition 2-1). The action of g_* on $H_2(X, Z)$ is unique up to $\operatorname{Aut}(H_2(X, Z))$. Note that a nowhere vanishing holomorphic 2-form on X is an eigenvector of g^* acting on $H^2(X, C)$. Hence the uniqueness of algebraic K3 surface with $m_x = 66$

easily follows from the Torelli theorem for algebraic K3 surfaces ([4]). The same observation shows the uniqueness of algebraic K3 surface with $m_x=42$. We omit the proof.

(3.4) Proof of the assertion (1). The same argument as in (3.2) shows that m_x is a divisor of 66, 42 or 12 except in the following two cases: $S_x = U$ and $5|m_x$ or $m_x = 8$. In any case there exists an automorphism g of X which acts on P^1 as a permutation of order 5 or 2. However it follows from the Lefschetz fixed point formula [7], Lemma 1.6 that these cases do not occur. In fact the Lefschetz number of g is equal to $4-20/\phi(|g|)$ which is negative integer. On the other hand, the fixed curves of g are contained in fibres of π , and hence their Euler numbers are non negative, which is a contradiction.

Added in Proof. I. Dolgachev and T. Shioda have informed the author that they gave another simple construction of algebraic K3 surfaces with $m_x=66$, 42 and 12.

References

- [1] Kodaira, K.: On compact analytic surfaces II; III. Ann. Math., 77, 563-626; 78, 1-40 (1963).
- [2] —: On the structure of compact complex analytic surfaces I. Amer. J. Math., 86, 751-798 (1964).
- [3] Nikulin, V. V.: Finite automorphism groups of Kähler surfaces of type K3. Proc. Moscow Math. Soc., 38, 75-137 (1979).
- [4] Piatetskii-Shapiro, I. and Shafarevich, I. R.: A Torelli theorem for algebraic surfaces of type K3. Math. USSR Izv., 35, 530-572 (1971).
- [5] Serre, J. P.: Cours d'arithmétique. Presses Univ. de France, Paris (1970).
- [6] Shiga, K.: One attempt to the K3 modular function II. Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4), 8, no. 1, 157-182 (1981).
- [7] Ueno, K.: A remark on automorphisms of Enriques surfaces. J. of Fac. Sci. Univ. Tokyo, Sec. IA, vol. 23, no. 1, 149-165 (1976).
- [8] Vorontsov, S. P.: Automorphisms of even lattices that arise in connection with automorphisms of algebraic K3 surfaces. Vestnik Moskovskogo Universiteta, Matematika, vol. 38, no. 2, 19-21 (1983).