
356 Proc. Japan Acad., 52, Ser. A (1986) [Vol. 62 (A),

102. On Automorphisras of Algebraic K3 SurJaces
which Act Trivially on Picard Groups

By Shigeyuki KOND{3
Department of Mathematical Sciences, Tokyo Denki University

(Communicated by Kunihiko KODAIRA, M. J.A., Nov. 12, 1986)

l Introduction. In this note we study automorphisms of algebraic
K3 surfaces over C which act trivially on Picard groups. Recall that a K3

surface X is a nonsingular compact complex surface with trivial canonical
bundle and dimH(X, (C))-0. The second cohomology group H(X, Z) ad-
mits a canonical structure o a lattice of rank 22 induced rom the cup
product. We denote by Sx the Picard group of X. Then Sx has a structure
of a sublattice of H(X, Z). Let Tx be the orthogonal complement of Sz in
H(X, Z)which is called a transcendental lattice of X. Put Hz-- Ker(Aut(X)
-Aut(Sz)). Then Hx is a cyclic group Z/m of order m, and (m) is a divisor
of the rank of Tx where is the Euler function ([3], Corollary 3.3).

Theorem. Let X be an algebraic K3 surface and mx the order of Hx.
Assume that the lattice Tx is unimodular (i.e. det(Tx)---+-l). Then

(1) mx is a divisor of 66, 44 or 12.
(2) Suppose that (m)-rank(Tx). Then mr is equal to either 66 or

42. Moreover for m--66 or 42, there exists a unique (up to isomorphisms)
algebraic K3 surface with mx=m.

In case Tz is non unimodular, Vorontsov [8] proved a similar result
as the above theorem. However his statement or unimodular case is not
complete and contains a mistake, i.e. he claims that there exists an alge-
braic K3 surface with mx=12 and rank(Tx)=(12) (his proof has not yet
published). His method is based on the theory of a cyclotomic field Q(m).
Here we use only the theory of elliptic surfaces due to Kodaira [1].

2. Example. In this section we construct two examples of algebraic
K3 surfaces with mx 66, 42.

(2.1) Example 1. Let (x, y, z) be a system of a homogeneous coordi-
nate of P. We take two copies W0 P Co and W P C of the cartesian
product P C and form their union W= W0 W by identifying (x, y, z, u)
e Wo with (x, y, z, u)e W if and only if u. u,= 1, x=x, y=u. y and z=
u.z. We define a subvariety X of W by the following equations"- 1-[ (-)-x o,
(2. 2)

where (i=1, ,..., 1.) are distinct eomlex numbers. Let be a pro-
jeetion from X to the -sphere P. It is easy to see that X is non singular
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and -(u) is a non singular elliptic curve with the functional invariant zero
for every u except (i--l, ..., 12). Moreover we can see that -() is a
singular fibre of type II, namely a rational curve with one cusp, and X is
a K3 surface. The curve L--{y--z--O}--{y--z--O} gives a holomorphic
section of the elliptic pencil . And also the form co-w "duAdv gives a
nowhere vanishing holomorphic 2-form on X where (u, w-z/x, v--y/x) is
an affine coordinate. The above construction of X is due to Shiga [6],
Remark 1-3 (also see [2]). We define an automorphism gl of X as follows:
g(x, y, z, u)=(-x, y, e. z, u), g(x, y, z, u)=(-x, y, e. z, u) where e is
a primitive 3-th root of unity. Obviously g, is of order 6.

In the following we assume that -0 and --e (i--l, ..., 11) where
e is a primitive 11-th root of unity. Then g(x, y, z, u)= (x, espy. y, e. z, e. u),
g2(xl, y, z, u)--(xl, yl, z, el1. u) defines an automorphism of X of order 11.
Put g--gog--g2og. Then g is of order 66 and g*o---e.e.oo. Since
(66)lrank(Tz), we have rank(Tz)=20. Hence rank(Sx)--2 (recall that
rankH(X, Z)-22). Note that Sx contain,s both classes of a fibre of and

the sectionLwhichformaunimodularlattice U=( 10) of rank2. Hence
Sx is isomorphic to U. Since Tx is the orthogonal complement of Sx in the
unimodular lattice H(X, Z), Tx is also unimodular (cf. [3], 1).

(2.3) Remark. In the equations (2.2), put ,--e (i--1, ..., 12) where
e2 is a primitive 12-th root of unity. Then we obtain an algebraic K3
surface with mx= 12 and Sx= U.

(2.4) Example 2. With the same notation as in Example 1, we define
a subvariety Y’ of W by the following equations:

z-y{y(u-o)l-I (u-)- x}-- 0,
z--y{y(1--Uo)=l (1--u)-- x[} 0.

It is easy to see that Y’ has a singularity of type Es at (0, 1, 0, 0). Let Y
be a minimal resolution of Y’. Then Y is a K3 surface. Let " Y--+P be
a map induced rom a projection from Y’ to the u-sphere P. We can see
that -(u) is a non singular elliptic curve with the unctional invariant
zero for every u except (i=0, 1, ..., 7). Moreover =-(0) is a singular
fibre of type II* and =-() is a singular fibre of type II (i--1, ..., 7). Now
we put 0=0 and =e (i=1, ..., 7) where e is a primitive 7-th root of
unity. Then in the similar way as in Example 1, we can construct an
automorphism g of order 42. It is easy to see that Tx is isomorphic to a
unimodular lattice U@ U E where E is a negative definite lattice of rank
8 associated with the Dynkin diagram of type E. From the construction,
g* acts on Sx as identity.

:}. Proof of Theorem. First we recall that Tx is isomorphic to
U U, UUEs or U U(R)E@ Es because Tx is an even unimodular
lattice (cf. [5]). Hence Sx is isomorphic to U E Es, U E or U, respec-
tively. The following Lemma ollows from [4], 3, Corollary 3 and the
classification of singular fibres of elliptic pencils [1].
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(3.1) Lemma. X has an elliptic pencil with a section. Its only
reducible singular fibre (if exists) is of type II*.

(3.2) Proof of the assertion (2). In case Tx=U U, then rex--12,
10 or 8. Since Sz-UEsEs, the elliptic pencil has two reducible
singular fibres of typeII*, and other singular fibres are either o type II
or of type I,. We denote by r, resp. s, the number of singular fibres
type II, resp. type I,. Then by the formula [1], (12.6), we have 2r+s=4.
Note that any g (g e Hz) preserves the structure of the pencil z and a
section of u, and hence the order of the restriction of g on fibres is a
divisor of 6 or 4. If g is of order 12, then we can see that (r, s)= (2, 0) and
the order of the restriction of g on fibres is 6. However this is impossible
since g acts on X as identity. Similarly we conclude mz12, 10 and 8.

In the same way, we have rex=66 if Tz=UUEsEs and rex=42
or 26 if Tx=UUEs. Moreover if m=66, then the order of the re-
striction of Hx on fibres is divisible by 3 and hence the unctional invariant
of z is a constant (=0). Hence all singular fibres of are of type II.
Similarly if m=42, then has one singular fibre of type II* and 7 singular
fibres of type II. We now claim that m=26 does not occur. If g is an
automorphism of order 26 (g e Hx), then u has 14 singular fibres of type
g fixes one singular fibre F of type I, and acts on the set of other 13 singular
fibres o type I, as a permutation of order 13. Since g preserves a node p
of F and a section of , F is a fixed curve of g. Hence g acts on the tangent
space of X at p as identity. This is a contradiction because (g)*wz= e,.wx
where wz is a nowhere vanishing holomorphic 2-orm of X and e, is a
primitive 13-th root of unity.

(3.3) Uniqueness of K surfaces with rex=66, 42. Let X be an
algebraic K3 surface with mz=66. We have already seen that such K3
surface exists ( 2). By the above observation (3.2), X must have an elliptic
pencil z:XP with a section L which has 12 singular fibres of type II.
Denote by {} the set of points o P such that -’() is singular (i=0, 1,
.., 11). We may assume that g fixes 0 and acts on {,..., } as a

permutation. Also g induces an automorphism of order 6 on fibres of
Now we take a homology basis of H(X, Z) as follows (see [6], 2) Let F
be a smooth fibre of and {, } a basis of H(F, Z). And let a (i=1, 2,
.., 10) be an oriented arc in P which starts from 0 and goes to so that
a does not intersect any other a. We set

C_=XT,
C=XT for i=1, ..., 10,

Then {C,, ..., C} gives a basis of H(X, Z) ([6], Proposition 2-1). The
action of g. on H(X, Z) is unique up to Aut(H(X, Z)). Note that a no-
where vanishing holomorphic 2-form on X is an eigenvector of g* acting
on H"(X, C). Hence the uniqueness of algebraic K3 surface with rex=66
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easily follows from the Torelli theorem for algebraic K3 surfaces ([4]).
The same observation shows the uniqueness of algebraic K3 surface with

rex=42. We omit the proof.
(3.4) Proof of the assertion (1). The same argument as in (3.2) shows

that mx is a divisor of 66, 42 or 12 except in the following two cases"

Sx= U and 5]mx or rex--8. In any case there exists an automorphism g
of X which acts on P as a permutation of order 5 or 2. However it follows
from the Lefschetz fixed point formula [7], Lemma 1.6 that these cases do
not occur. In fact the Lefschetz number of g is equal to 4--20/(Igl) which
is negative integer. On the other hand, the fixed curves of g are contained
in fibres of , and hence their Euler numbers are non negative, which is a
contradiction.

Added in Proof. I. Dolgachev and T. Shioda have informed the author
that they gave another simple construction of algebraic K3 surfaces with
mx-66, 42 and 12.
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